
www.manaraa.com

Modular Data Structure Verification

by

Viktor Kuncak

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2007

c© Massachusetts Institute of Technology 2007. All rights reserved.

Author .

Department of Electrical Engineering and Computer Science

February 2007

Certified by. .

Martin C. Rinard

Professor of Computer Science and Engineering

Thesis Supervisor

Accepted by .

Arthur C. Smith

Chairman, Department Committee on Graduate Students

www.manaraa.com

2

www.manaraa.com

Modular Data Structure Verification

by

Viktor Kuncak

Submitted to the Department of Electrical Engineering and Computer Science
on February 2007, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This dissertation describes an approach for automatically verifying data structures, focusing
on techniques for automatically proving formulas that arise in such verification. I have
implemented this approach with my colleagues in a verification system called Jahob. Jahob
verifies properties of Java programs with dynamically allocated data structures.

Developers write Jahob specifications in classical higher-order logic (HOL); Jahob re-
duces the verification problem to deciding the validity of HOL formulas. I present a new
method for proving HOL formulas by combining automated reasoning techniques. My
method consists of 1) splitting formulas into individual HOL conjuncts, 2) soundly approx-
imating each HOL conjunct with a formula in a more tractable fragment and 3) proving
the resulting approximation using a decision procedure or a theorem prover. I present three
concrete logics; for each logic I show how to use it to approximate HOL formulas, and how
to decide the validity of formulas in this logic.

First, I present an approximation of HOL based on a translation to first-order logic,
which enables the use of existing resolution-based theorem provers. Second, I present an
approximation of HOL based on field constraint analysis, a new technique that enables
decision procedures for special classes of graphs (such as monadic second-order logic over
trees) to be applied to arbitrary graphs.

Third, I present an approximation using Boolean Algebra with Presburger Arithmetic
(BAPA), a logic that combines reasoning about sets of elements with reasoning about car-
dinalities of sets. BAPA can express relationships between sizes of data structures and
invariants that correlate data structure size with integer variables. I present the first im-
plementation of a BAPA decision procedure, and establish the exact complexity bounds for
BAPA and quantifier-free BAPA.

Together, these techniques enabled Jahob to modularly and automatically verify data
structure implementations based on singly and doubly-linked lists, trees with parent point-
ers, priority queues, and hash tables. In particular, Jahob was able to prove that data
structure implementations satisfy their specifications, maintain key data structure invari-
ants expressed in a rich logical notation, and never produce run-time errors such as null
dereferences or out of bounds accesses.

Thesis Supervisor: Martin C. Rinard
Title: Professor of Computer Science and Engineering

3

www.manaraa.com

Acknowledgments

I would like to thank my advisor Martin Rinard for his guidance in all the years of graduate
school, for providing me with an environment where I was able to dedicate myself to research
as never before, for teaching me to think about the implications of my research, and for
his patience to work with me on papers and talks. I thank my thesis committee member
Daniel Jackson for numerous discussions on logic and its use in software analysis, for a
very enjoyable collaboration experience, and for his excellent questions about my technique
for combining reasoning procedures described in Chapter 4. I thank my thesis committee
member Professor Arvind for great discussions about programing languages, analysis, and
methodology.

I thank my collaborators, who greatly enriched my research and life experience and
made the sleepless nights before each deadline so entertaining. I thank Andreas Podelski
for discussions about program analysis that started a fruitful collaboration, for his wise ad-
vice, and for hosting me at the Max-Planck Institute for Computer Science. I thank Charles
Bouillaguet for his work on the translation to first-order logic described in Chapter 5. I
thank Thomas Wies for developing a sophisticated symbolic shape analysis whose one part
is the field constraint analysis described in Chapter 6, and implementing parts of Jahob in-
frastructure. I thank Huu Hai Nguyen for implementing a first translation from higher-order
logic to BAPA and an interface to the Omega solver, on which the experience of Section 7.7
is based. I thank Karen Zee for her contributions to Hob and Jahob infrastructure, for
many proved formulas and many discussions. I thank Patrick Lam for his role in designing
and building the Hob system. Without our experience with Hob, I would have never started
building Jahob. I thank Bruno Marnette for exciting discussions on polynomial-time logics
for sets with cardinality constraints. I thank Rustan Leino for a great internship experience
at Microsoft Research and many insightful discussions on program verification methodol-
ogy. I thank Konstantine Arkoudas for introducing me to his Athena interactive theorem
proving environment. I thank Peter Schmitt and Suhabe Bugrara who used Jahob in its
early days to specify and verify Java programs.

For useful discussions I also thank: current and previous members of our research group
C. Scott Ananian, Chandrasekhar Boyapati, Michael Carbin, Brian Demsky, Zoran Džunić,
Maria-Cristina Marinescu, Darko Marinov, Radu Rugina, Alexandru Salcianu, and Amy
Williams, my MIT colleagues including Greg Dennis, Micha l Karczmarek, Sarfraz Khurshid,
Angelina Lee, Karola Meszaros, Sayan Mitra, Derek Rayside, Gregory Shakhnarovich, Mana
Taghdiri, Bill Thies, Michael Taylor, Emina Torlak, Mandana Vaziri, David Wentzlaff, and
to my colleagues around the world, including Sumit Gulwani, Mayur Naik, Ružica Piskač,
Andrey Rybalchenko, and Greta Yorsh.

I thank my parents, Katarina Kunčak and Jaroslav Kunčak, and to my brother, Miro
Kunčak, for their continuous support, for numerous emails, and for coming to visit me in
Boston this October—it was a wonderful week.

Finally, I thank you, the reader who came across this document. While no part of a
dissertation can be as entertaining as the acknowledgments, I hope you find something of
interest on the pages that follow.

Viktor Kuncak
, Cambridge, Massachusetts

November 2006

4

www.manaraa.com

Contents

1 Introduction 9

1.1 Program Verification Today . 9

1.2 Verification of Data Structures . 10

1.3 The Design of the Jahob Verification System 11

1.4 Reasoning about Expressive Constraints in Jahob 12

1.5 Summary of Contributions . 13

2 An Example of Data Structure Verification in Jahob 15

2.1 A Jahob Session . 15

2.2 Specifying Java Programs in Jahob . 15

2.3 Details of a Container Implementation and Specification 17

2.4 Generating Verification Conditions in Jahob 21

2.5 Proving Formulas using Multiple Reasoning Procedures 23

3 An Overview of the Jahob Verification System 27

3.1 Implementation Language Supported by Jahob 27

3.2 Specification Constructs in Jahob . 28

3.2.1 Procedure Contracts . 29

3.2.2 Specification Variables . 29

3.2.3 Class Invariants . 30

3.2.4 Encapsulating State in Jahob . 31

3.2.5 Annotations within Procedure Bodies 32

3.2.6 Meaning of Formulas . 34

3.2.7 Receiver Parameters . 35

3.2.8 Meaning of Frame Conditions . 35

3.3 Generating Verification Conditions . 36

3.3.1 From Java to Guarded Command Language 36

3.3.2 Weakest Preconditions . 37

3.3.3 Handling Specification Variables . 38

3.3.4 Avoiding Unnecessary Assumptions 38

3.4 Related Work . 39

3.5 Jahob System Implementation . 40

4 A Higher-Order Logic and its Automation 43

4.1 Higher Order Logic as a Notation for Sets and Relations 43

4.1.1 Rationale for Using Higher-Order Logic in Jahob 47

4.2 Interface to an Interactive Theorem Prover 49

5

www.manaraa.com

4.2.1 A Simple Interface . 49

4.2.2 A Priority Queue Example . 49

4.2.3 Formula Splitting . 49

4.2.4 Lemma Matching . 51

4.2.5 Summary of Benefits . 52

4.2.6 Discussion . 54

4.3 Approximation of Higher-Order Logic Formulas 54

4.3.1 Approximation Scheme for HOL Formulas 54

4.3.2 Preprocessing Transformations of HOL Formulas 56

4.4 Summary and Discussion of the Combination Technique 57

4.4.1 Jahob’s Combination Algorithm . 57

4.4.2 Verifying Independent Invariants . 58

4.4.3 Using Annotations to Aid the Combination Algorithm 59

4.4.4 Lemmas about Sets . 60

4.4.5 Comparison to Nelson-Oppen Combination Technique 61

4.5 Related Work . 63

4.6 Conclusion . 64

5 First-Order Logic for Data Structure Implementation and Use 65

5.1 Binary Tree Example . 67

5.2 Translation to First-Order Logic . 71

5.3 From Multisorted to Unsorted Logic . 73

5.4 Assumption Filtering . 78

5.5 Experimental Results . 78

5.6 First-Order Logic Syntax and Semantics . 81

5.6.1 Unsorted First-Order Logic with Equality 81

5.6.2 Multisorted First-Order Logic with Equality 82

5.6.3 Notion of Omitting Sorts from a Formula 83

5.7 Omitting Sorts in Logic without Equality 83

5.7.1 Multisorted and Unsorted Unification 83

5.7.2 Multisorted and Unsorted Resolution 85

5.8 Completeness of Omitting Sorts . 85

5.9 Soundness of Omitting Sorts in Logic with Equality 86

5.10 Sort Information and Proof Length . 87

5.11 Related Work . 88

5.12 Conclusions . 90

6 Field Constraints and Monadic Second-Order Logic for Reachability 91

6.1 Examples . 93

6.1.1 Doubly-Linked List with an Iterator 93

6.1.2 Skip List . 94

6.1.3 Students and Schools . 96

6.2 Field Constraint Analysis . 98

6.3 Using Field Constraint Analysis to Approximate HOL Formulas 106

6.4 Experience with Field Constraint Analysis 107

6.5 Further Related Work . 107

6.6 Conclusion . 108

6

www.manaraa.com

7 Boolean Algebra with Presburger Arithmetic for Data Structure Sizes 109
7.1 The First-Order Theory BAPA . 112
7.2 Applications of BAPA . 113

7.2.1 Verifying Data Structure Consistency 113
7.2.2 Proving Simulation Relation Conditions 114
7.2.3 Proving Program Termination . 115
7.2.4 Quantifier Elimination . 116

7.3 Decision Procedure for BAPA . 116
7.3.1 Example Run of Algorithm α . 120

7.4 Complexity of BAPA . 120
7.4.1 Lower Bound on the Complexity of Deciding BAPA 121
7.4.2 Parameterized Upper Bound on PA 121
7.4.3 Upper Bound on the Complexity of Deciding BAPA 122
7.4.4 Deciding BA as a Special Case of BAPA 123

7.5 Eliminating Individual Variables from a Formula 124
7.5.1 Reducing the Number of Integer Variables 125

7.6 Approximating HOL formulas by BAPA formulas 126
7.7 Experience Using Our Decision Procedure for BAPA 126
7.8 Further Observations . 128

7.8.1 BAPA of Countably Infinite Sets . 128
7.8.2 BAPA and MSOL over Strings . 129

7.9 Quantifier-Free BAPA is NP-complete . 129
7.9.1 Constructing Small Presburger Arithmetic Formulas 131
7.9.2 Upper Bound on the Number of Non-Zero Venn Regions 132
7.9.3 Properties of Nonredundant Integer Cone Generators 132
7.9.4 Notes on Lower Bounds and Set Algebra with Real Measures 135
7.9.5 A decision procedure for QFBAPA 138

7.10 Related Work . 138
7.11 Conclusion . 140

8 Conclusions 141
8.1 Future Work . 143
8.2 Final Remarks . 147

7

www.manaraa.com

8

www.manaraa.com

Chapter 1

Introduction

Does a program written in some programming language behave in a desirable way? Con-
tinuously answering such questions in a constructive way is the essence of programming
activity. As the size and complexity of programs grows beyond the intellectual capacity of
any single individual, it becomes increasingly interesting to apply software tools themselves
to help programmers answer such questions. The techniques for building such verification
tools are the subject of this dissertation. These questions are immediately relevant to pro-
gramming practice and are likely to have impact for the future of programming languages
and software engineering. They are also a source of interesting problems in mathematical
logic, algorithms, and theory of computation.

1.1 Program Verification Today

Decades after its formulation, the verification of correctness properties of software systems
remains an open problem. There are many reasons for revisiting the challenge of verifying
software properties today.

1. We are witnessing algorithmic advances in specialized techniques such as abstract in-
terpretation and data-flow analysis [35, 75, 226, 225], model checking [24, 40, 136],
and advanced type systems [257, 78, 6, 115, 39]. These specialized techniques have
proven useful for improving the reliability and performance of software, and there is
a clear potential for their use as part of more general verification systems. Moreover,
techniques that establish specialized properties have demonstrated that it is profitable
to focus the verification effort on partial correctness properties; it is therefore inter-
esting to explore the consequences of applying the same focus to systems that support
partial but more heterogeneous properties.

2. Advances in automated theorem proving [248, 244], constraint solving [132, 80, 268],
decision procedures [143, 215], and combinations of these techniques [30, 162, 94]
enable us to solve new classes of problems in an automated way. The basic idea of
this approach is to formulate the verification problem as a set of logical constraints
and use solvers for these constraints to check the properties of interest.

3. Increases in hardware resources make the computational power available for verifica-
tion problems larger, making previously infeasible tasks possible and allowing easier
evaluation of expensive techniques.

9

www.manaraa.com

4. As software becomes ubiquitous, society is less willing to tolerate software errors.
The software industry is therefore beginning to use specification and verification as a
standard part of their software development process [74].

Several research groups have created program verification infrastructures that exploit
some of these recent developments [61, 27, 80, 96, 178], and their creation has led to impor-
tant steps towards a principled and effective programming methodology for reliable software.
Currently, however, these tools are still limited in the scope of properties they can handle
in an automated way. The limitations apply in particular to the problem of verifying that
complex linked data structures and arrays satisfy given properties in all possible program
executions. I have developed a variety of new techniques for automatically proving the
validity of constraints that arise in the verification of such complex data structures. To
evaluate these techniques, my colleagues and I designed and implemented a concrete ver-
ification system that transforms programs and specifications into logical constraints and
then proves the validity of the generated constraints. Our results indicate that our system
can modularly and automatically verify data structure implementations based on singly
and doubly-linked lists, trees with parent pointers, priority queues, and hash tables. In
particular, the system was able to prove that data structure implementations satisfy their
specifications, maintain key data structure invariants expressed in a rich logical notation,
and never produce run-time errors such as null dereferences or out of bounds accesses.

1.2 Verification of Data Structures

Software with dynamically allocated linked data structures is both important and difficult
to reason about. Dynamically allocated data structures allow applications to adapt to
the sizes of their inputs and to use many efficient algorithms. As a result, such data
structures are common in modern software. Unfortunately, this same flexibility makes it
easy for programmers to introduce errors, ultimately causing software to crash or produce
unexpected results. Automated reasoning about such software is therefore desirable, and
many techniques have emerged to tackle this problem, often under the name of “shape
analysis” [106, 226, 224, 190, 167, 101] because data structure properties determine the
shapes of these data structures in program memory.

One of the main challenges in this area was obtaining a modular approach for automated
analysis of data structure properties. Modular analysis appears to be the only long-term
solution for designing scalable analyses for data structures, because the precision needed
for data structure analyses prevents them from being deployed as whole-program analyses.
While type systems and program verification environments have always supported the no-
tion of modular analysis, they have traditionally lacked support for reasoning about precise
reachability properties within linked data structures. On the other hand, shape analy-
ses have traditionally lacked good specification formalisms that would allow developers to
specify the desired properties and decompose the overall analysis task into smaller subtasks.

Our starting point is several recent approaches for modular analysis of data structure
properties. These approaches include role analysis [151], which combines typestate ideas
[233] with shape analysis, and the Hob system [152] for the analysis of data structure
implementations [253, 254] and data structure uses [164].

Jahob system. Building on these ideas, my collaborators and I have implemented a new
verification system, named Jahob. The current focus of Jahob is data structure verification.

10

www.manaraa.com

However, given the range of properties that it is currently able to verify, I believe that Jahob
is also promising as a more general-purpose verification system. The primary contribution
of this dissertation is a set of reasoning techniques within Jahob. I also summarize the
design of Jahob and present our experience using Jahob to verify sophisticated correctness
properties of a variety of data structure implementations.

1.3 The Design of the Jahob Verification System

There are several design decisions involved in creating a usable verification system. I have
evaluated one such set of design decisions by building a working Jahob prototype. My
primary goal was to create a system that produces sufficiently realistic proof obligations to
demonstrate that Jahob’s reasoning techniques are practically relevant. I note that Jahob
currently does not have a fully developed methodology for object encapsulation. Certain
aspects of the Jahob design are therefore likely to change in the future, but most of the
aspects I discuss are independent of this issue.

Java subset as the implementation language. My guiding principles in designing
Jahob were generality, simplicity and familiarity. Therefore, the Jahob implementation lan-
guage is a sequential, imperative, memory-safe language defined as a subset of the popular
memory-safe language Java [112]. The developer provides Jahob specifications as special
comments. This approach enables the developer to compile and test the software using
existing Java tools. I found it counterproductive to support the full Java language, so the
current Jahob implementation language is a simple subset of Java sufficient for writing
imperative and functional data structures.

Isabelle subset as the specification language. Familiarity and generality were also
factors in choosing the specification language for Jahob. Specification formulas in Jahob
are written in classical higher-order logic—a notation that, in my view, fits well with cur-
rent informal reasoning in computer science and mathematics. Syntactically, the specifica-
tion language for formulas is a subset of the language of the Isabelle interactive theorem
prover [201]. This design decision allows Jahob to build on the popularity of an existing
and freely available interactive theorem proving framework to help developers understand
Jahob annotations. It also enables the use of Isabelle to interactively prove formulas that
Jahob fails to prove automatically. In particular, this design enables the developers to map
parts of proof obligations to program annotations when they perform interactive proofs.

Modular verification. Jahob uses modular reasoning with procedures and modules
(classes) as basic units of modularity. This approach allows the developer to separately 1)
verify that each procedure satisfies its specification, and 2) verify the rest of the program
assuming the specification of each procedure. This separation is key to Jahob’s scalability:
verifying expressive data structure properties would not be feasible without a mechanism
for restricting reasoning to a small program fragment at a time. Following the standard
approach [175], [96, Section 4], procedures have preconditions (describing program state at
the entry to the procedure), postconditions (correlating initial and final states), and frame
conditions (approximating the region of the state that the procedure may modify). Classes
can specify representation invariants, which indicate properties that should be true initially
and that each procedure (method) should preserve.

Specification variables for abstraction. When verifying a complex piece of software,
it is often useful to abstract the behavior of parts of the system using data abstraction [77].

11

www.manaraa.com

Jahob uses specification variables to support data abstraction. Specification variables are
analogous to variables in Java but exist only for the purpose of reasoning. In addition
to individual objects and integers, specification variables can also denote sets, functions,
and relations. Specification variables often lead to simpler specifications and easier proof
obligations.

Modular architecture. The architecture of the current Jahob implementation separates
the verification problem into two main subproblems: 1) the generation of logical constraints
(proof obligations) in higher-order logic (HOL); and 2) proving the validity of the generated
proof obligations. The generation of the proof obligations proceeds through several stages;
if needed, a Jahob user can inspect the results of these stages to understand why Jahob
generated a particular proof obligation. To prove the validity of the generated proof obliga-
tions, Jahob combines multiple automated reasoning procedures. Each reasoning procedure
can prove formulas in a specific subset of HOL. To apply a reasoning procedure to a specific
proof obligation, Jahob first uses a sound approximation to convert the proof obligation
into the procedure’s subset of HOL, then uses the procedure to prove the converted proof
obligation. The techniques for approximating expressive constraints with more tractable
constraints and the techniques for reasoning about these more tractable constraints are the
core technical contribution of this dissertation.

1.4 Reasoning about Expressive Constraints in Jahob

Jahob represents proof obligations in a subset of Isabelle’s higher-order logic. This approach
enables Jahob to pretty print proof obligations and use Isabelle (or other interactive theo-
rem provers) to prove the validity of proof obligations. Unfortunately, the use of interactive
theorem provers often requires manually provided proof scripts (specifying, for example,
quantifier instantiations, case analysis, and lemmas). Constructing proof scripts can be
time consuming and requires the knowledge of proof rules and tactics of the interactive the-
orem prover. To make the proposed verification approach practical, it is therefore essential
to develop techniques that increase the automation of reasoning about higher-order logic
formulas.

A simple combination method for expressive constraints. Jahob’s approach to
automate reasoning about higher-order logic formulas arising in data structure verification
is the following. Jahob first splits formulas into an equivalent conjunction of independent
smaller formulas. Jahob then attempts to prove each of the resulting conjuncts using a (po-
tentially different) specialized reasoning procedure. Each specialized reasoning procedure
in Jahob decides a subset of higher-order logic formulas. Such a procedure therefore first
approximates a higher-order logic formula using a formula in the subset, and then proves the
resulting formula using a specialized algorithm. The core contributions of this dissertation
are three specialized reasoning techniques: translation to first-order logic, field constraint
analysis with monadic second-order logic of trees, and Boolean Algebra with Presburger
Arithmetic.

First-order logic approximation. Translation to first-order logic enables the use of
first-order theorem provers to prove certain higher-order logic formulas. This technique is
promising because 1) proof obligations for correct programs often have short proofs and
2) decades of research in resolution-based automated theorem proving have produced im-
plementations that can effectively search the space of proofs. A first-order theorem prover

12

www.manaraa.com

can act as a decision procedure for certain classes of problems, while being applicable
even outside these fragments. Note that it is possible to axiomatize higher-order logic and
lambda calculus by translating it into combinatory logic [71]. Such approaches enable the-
orem provers to prove a wide range of mathematical formulas [126, 188, 187]. However,
such translations also potentially obscure the original formulas. Instead, we use a transla-
tion that attempts to preserve the structure of the original formula, typically translating
function applications into predicates applied to arguments (instead of encoding function ap-
plication as an operator in logic). As a result, some constructs are simply not translatable
and our translation conservatively approximates them. Nevertheless, this approach enabled
Jahob to prove many formulas arising in data structure verification by leveraging theorem
provers such as SPASS [248] and E [228]. We have successfully used this technique to verify
properties of recursive linked data structures and array-based data structures.

Field constraint analysis. We have developed field constraint analysis, a new technique
that enables decision procedures for data structures of a restricted shape to be applied to
a broader class of data structures. Jahob uses field constraint analysis to extend the range
of applicability of monadic-second order logic over trees. Namely, a direct application of
monadic second-order logic over trees would only enable the analysis of simple tree and
singly-linked list data structures. The use of field constraint analysis on top of monadic
second-order logic enables Jahob to verify a larger set of data structures, including doubly-
linked lists, trees with parent pointers, two-level skip lists, and linked combinations of
multiple data structures. We have established the completeness of this technique for an
interesting class of formulas, which makes it possible to predict when the technique is
applicable. The overall observation of this approach is that it is often possible to further
extend expressive decidable logics (such as monadic second-order logic over trees) to make
them more useful in practice.

Boolean Algebra with Presburger Arithmetic. Boolean Algebra with Presburger
Arithmetic (BAPA) is a logic that combines reasoning about sets of elements with reason-
ing about cardinalities of sets. BAPA supports arbitrary integer and set quantifiers. A
specialized reasoning technique based on BAPA makes it possible to reason about the rela-
tionships between sizes of data structures as well as to reason about invariants that correlate
data structure size with integer variables. I present the first implementation and the first
and optimal complexity bounds for deciding BAPA. I also characterize the computational
complexity of quantifier-free BAPA. These results show that data structure verification can
lead to challenging and easy-to-describe decision problems that can be addressed by design-
ing new decision procedures; these decision procedures then may also be of independent
interest.

1.5 Summary of Contributions

In summary, this dissertation makes the following contributions.

• An approach for reasoning about expressive logical constraints by splitting formulas
into conjuncts and approximating each conjunct using a different specialized reasoning
procedure;

• A specialized reasoning procedure based on a translation to first-order logic that
enables the use of resolution-based theorem provers;

13

www.manaraa.com

• A specialized reasoning procedure based on field constraint analysis, which extends
the applicability of existing decision procedures such as monadic second-order logic
over trees;

• A specialized reasoning procedure based on Boolean Algebra with Presburger Arith-
metic, which enables reasoning about sizes of data structures.

My colleagues and I have implemented these techniques in the context of the Jahob ver-
ification system. This dissertation outlines the current design of Jahob. Jahob accepts
programs in a subset of Java with annotations written in an expressive subset of Isabelle.
Jahob supports modular reasoning and data abstraction, enabling focused application of
potentially expensive reasoning techniques. We used Jahob to verify several data structure
implementations, including, for the first-time, automated verification that data structures
such as hash tables correctly implement finite maps and satisfy their internal representation
invariants. I present examples of these data structures and their specifications throughout
the dissertation.

These results suggest that the routine verification of data structure implementations
is realistic and feasible. We will soon have repositories of verified data structures that
provide most of the functionality required in practice to effectively represent and manipulate
information in computer programs. The focus will then shift from the verification of data
structure implementations to the verification of application-specific properties across the
entire program.

The reasoning techniques described in this dissertation are likely to be directly relevant
for such high-level verification because they address the verification of certain fundamental
properties of sets and relations that arise not only within data structures, but also at the
application level. For example, the constraint “a set of objects and a relation form a tree”
arises not only in container implementations (where the tree structure ensures efficient
access to data but is not externally observable) but also when modelling application data,
as in a family tree modelling ancestors in a set of individuals. Note that in the latter case,
the ancestor relationship is externally observable, so the tree property captures a constraint
visible to the users of the system. Such externally observable properties are likely to be of
interest regardless of software implementation details.

There is another way in which the techniques that this dissertation presents are im-
portant for high-level verification. Because they address the verification of data structure
implementations, these techniques allow other application-specific verification procedures
to ignore data structure implementation details. The ability to ignore these internal de-
tails simplifies high-level verification, leading to a wider range of automatically verifiable
properties.

In the near future, I expect developers to adopt tools that automatically enforce in-
creasingly sophisticated correctness properties of software systems. By enforcing the key
correctness properties, these tools narrow down the subspace of acceptable programs, effec-
tively decreasing the cognitive burden of developing software. Left with fewer choices, each
of which is more likely to be correct, developers will be able to focus less on formalizing
their intuition in terms of programming language constructs and more on the creative and
higher-level aspects of producing useful and reliable software systems.

14

www.manaraa.com

Chapter 2

An Example of Data Structure

Verification in Jahob

This chapter introduces the main ideas of data structure verification in Jahob using a
verified container implementation as an example. Although simple, this example illustrates
how Jahob reduces the verification problem to the validity of logical formulas, and how it
combines multiple reasoning procedures to prove the resulting formulas. I illustrate the
notation in the example along the way, deferring more precise descriptions to later sections:
the details of the Jahob specification language are in Section 3.2, whereas the details of
Jahob’s formula notation are in Section 4.1 (Figure 4-3).

2.1 A Jahob Session

Consider the verification of a global singly-linked list in Jahob. Figure 2-1 shows an example
verification session. The editor window consists of two sections. The upper section shows
the List class with the addNew method. The lower section shows the command used to
invoke Jahob to verify addNew, as well as Jahob’s output indicating a successful verification.
A Jahob invocation specifies the name of the source file List.java, the method addNew

to be verified, and a list of three provers: spass, mona, and bapa, used to establish proof
obligations during verification. Jahob’s output indicates a successful verification and shows
that all three provers took part in the verification.

2.2 Specifying Java Programs in Jahob

Figure 2-3 shows the List class whose verification is shown in Figure 2-1. Figure 2-3 uses
the ASCII character sequences that produce the mathematical symbols shown in Figure 2-1.
Just like in Isabelle/HOL [201], a more concise ASCII notation is also available for symbols
in Jahob formulas. For example, the the ASCII sequence --> can replace the keyword
\〈longrightarrow〉.

As Figures 2-1 and 2-3 illustrate, users write Jahob specifications as special comments
that start with the colon sign “:”. Therefore, it is possible to compile and run Jahob
programs using the existing Java compilers and virtual machines. Jahob specifications
use the standard concepts of preconditions, postconditions, invariants, and specification
variables [96, Section 4]. The specification of the addNew method is in the comment that
follows the header of addNew. It contains a requires clause (precondition), a modifies

15

www.manaraa.com

Figure 2-1: Screen shot of verifying a linked list implementation

16

www.manaraa.com

Figure 2-2: Example list data structure corresponding to Figure 2-3

clause (frame condition), and an ensures clause (postcondition). These clauses are the
public interface of addNew. Public interfaces enable the clients of List to reason about
List operations without having access to the details of the List implementation. Such
data abstraction is possible because addNew specification is stated only in terms of the
public content specification variable, without exposing variables next, data, root, and
size. The addNew specification therefore hides the fact that the container is implemented
as an acyclic singly-linked list, as opposed to, for example, a doubly-linked list, circular
list, tree, or an array. Researchers have identified the importance of data abstraction in
the context of manual reasoning about programs [77, 189, 123]; Jahob takes advantage of
this approach to improve the scalability of verification. In this particular example, the
postcondition of addNew allows clients to conclude (among other facts) that the argument x
of a call to addNew becomes part of content after the procedure finishes the execution. In
general, data structure interfaces that use sets and relations as specification variables allow
clients to abstractly reason about the membership of objects in data structures.

2.3 Details of a Container Implementation and Specification

We next examine in more detail the List class from Figure 2-3. Figure 2-2 illustrates the
values of variables in the List class when the list stores four elements.

Concrete state. The List class implements a global list, which has only one instance
per program. The static root reference points to an acyclic singly-linked list of nodes of
the List type. The List nodes are linked using the next field; the useful external data is
stored in the list using the data field. The size field maintains the number of elements of
the data structure.

Specification variables. Specification variables are variables that do not affect program
execution and exist only for the purpose of reasoning about the program. The List class
contains two ghost specification variables. A ghost specification variable changes only in
response to explicit specification assignments and is independent of other variables (see
Section 3.2.2). As Figure 2-2 shows, the nodes specification variable denotes the set of all
auxiliary List objects reachable from list root, whereas content stores the actual external
objects pointed to by data fields of nodes objects. Note that content is a public variable
used in contracts of public methods, whereas nodes is an auxiliary private variable that
helps the developer express the class invariants and helps Jahob prove them.

17

www.manaraa.com

class List {
private List next;
private Object data;
private static List root;
private static int size ;
/∗:

private static ghost specvar nodes :: objset = ”{}”;
public static ghost specvar content :: objset = ”{}”;

invariant nodesDef: ”nodes = {n. n \〈noteq〉 null \〈and〉 (root,n) \〈in〉 {(u,v). List .next u=v}ˆ∗}”;
invariant contentDef: ”content = {x. \〈exists〉 n. x = List.data n \〈and〉 n \〈in〉 nodes}”;

invariant sizeInv: ”size = cardinality content”;
invariant treeInv: ”tree [List .next]”;
invariant rootInv: ”root \〈noteq〉 null \〈longrightarrow〉 (\〈forall〉 n. List .next n \〈noteq〉 root)”;
invariant nodesAlloc: ”nodes \〈subseteq〉 Object.alloc”;
invariant contentAlloc: ”content \〈subseteq〉 Object.alloc”; ∗/

public static void addNew(Object x)
/∗: requires ”comment ’’xFresh’’ (x \〈notin〉 content)”

modifies content
ensures ”content = old content \〈union〉 {x}” ∗/

{
List n1 = new List();
n1.next = root;
n1.data = x;
root = n1;
size = size + 1;
/∗: nodes := ”{n1} \〈union〉 nodes”;

content := ”{x} \〈union〉 content”;
noteThat sizeOk: ”theinv sizeInv” from sizeInv, xFresh;

∗/
}

public static boolean member(Object x)
//: ensures ”result = (x \〈in〉 content)”
{

List current = root;
//: ghost specvar seen :: objset = ”{}”
while /∗: inv ”(current = null \〈or〉 current \〈in〉 nodes)

\〈and〉 seen = {n. n \〈in〉 nodes \〈and〉 (current,n) \〈notin〉 {(u,v). List .next u=v}ˆ∗}
\〈and〉 (\〈forall〉 n. n \〈in〉 seen −−> List.data n \〈noteq〉 x)” ∗/

(current != null) {
if (current.data==x) {

return true;
}
//: seen := ”seen \〈union〉 {current}”
current = current.next;

}
//: noteThat seenAll: ”seen = nodes”;
return false;

}

public static int getSize()
//: ensures ”result = cardinality content”
{ return size; }

}

Figure 2-3: Linked list implementation

18

www.manaraa.com

Class invariants. Class invariants denote properties of the private state of the class
that are true in all reachable program states. Following the standard approach [247], Ja-
hob proves that class invariants hold in reachable states by proving that they hold in the
initial state, and conjoining them to preconditions and postconditions of public methods
such as addNew. Invariants in Jahob are expressed using a subset of the notation of Is-
abelle/HOL [201]. The List class contains seven invariants.

The nodesDef invariant characterizes the value of the nodes specification variable as the
set of all objects n that are not null and are reachable from the root variable along the next
field. Note that the notation {x. P (x)} in Isabelle/HOL denotes the set of all elements x
that satisfy property P (x). Reachability along the next field is denoted by the membership
of the pair (root,n) in the transitive closure of the binary relation corresponding to the
function List.next. The function List.next maps each object x to the object referenced
by its next field. In general, Jahob models fields as total functions from all objects to
objects; if the field is inapplicable to a given object, the function is assumed to have the
value null. In Jahob’s semantic model an object essentially corresponds to a Java reference,
it is simply an identifier because its content is given entirely by the values of the functions
modelling the fields.

The contentDef invariant characterizes the value of the content specification variable
as the image of the nodes set under the List.data function corresponding to the data

field. The sizeInv invariant uses the cardinality operator to state that the size field is
equal to the number of objects in the content set. The treeInv invariant uses the tree

shorthand to state that the structure given by the List.next fields of objects is a union of
directed trees. In other words, there are no cycles of next fields and no two distinct objects
have the next field pointing to the same object. The rootInv invariant states that no next

field points to the first node of the list by requiring that, if root is not null, then the next

field of no other object points to it. The last two invariants, nodesAlloc and contentAlloc,
simply state that the sets nodes and content contain only allocated objects.

The addNew method. The addNew method expects a fresh element that is not already in
the list. The developer indicates this requirement using the requires clause x /∈ content.
The construct comment “xFresh” (...) labels the precondition formula with the identifier
xFresh, so that it can be referred to later. The modifies clause indicates that addNew may
modify the content specification variable. If this clause was absent (as is the case for the
member method), the method would not be allowed to modify the public content variable.
Note that private variables (such as root and next) need not be declared in the modifies

clause of a public method. The ensures clause of addNew indicates the relationship between
the values of content at procedure beginning and procedure end. The value of content at
the end of the procedure is denoted simply content, whereas the initial value of content at
procedure entry is denoted old content. The operator \〈union〉 denotes set union, so the
postcondition indicates that the object x is inserted into the list, that all existing elements
are preserved, and that no unwanted elements are inserted. Therefore, the contract of
addNew gives a complete characterization of the behavior of the method under the set view
of the list.

The body of the addNew method consists of two parts. The first part is a sequence
of the usual Java statements that create a fresh List node n1, insert n1 in the front of
the list, store the given object x into n1, and increment the size variable. The second
part of the body is a special comment containing three specification statements. The first
two statements are specification assignments, which assign the value denoted by the right-

19

www.manaraa.com

hand side formula to the variable on the left hand side. The first assignment updates
the nodes specification variable to reflect the newly inserted element n1, and the second
assignment updates the content variable to reflect the insertion of x. The final specification
statement is a noteThat statement, which establishes a lemma about the current program
state to help Jahob prove the preservation of the sizeInv invariant. In general, a noteThat

statement has an optional label, a formula, and an optional justification indicating the
labels of assumptions from which the formula should follow. In this case, the formula itself
is an invariant labelled sizeInv; the shorthand theinv L expands into the class invariant
given by the label L. The from keyword of the noteThat statement in addNew indicates
that the preservation of the sizeInv invariant follows from the fact that sizeInv was true
in the initial state of the procedure, and from the procedure precondition labelled xFresh.
When the from keyword is omitted, the system attempts to use all available assumptions,
which can become unfeasible when the number of invariants is large. Note that omitting
the precondition (x /∈ content) from the contract of addNew would cause the verification to
fail because the method would increment size even when x is already in the data structure,
violating the sizeInv invariant.

The member and getSize methods. The member method tests whether a given object
is stored in the list, whereas the getSize method returns the size of the data structure.
The member and getSize methods do not modify the data structure, but only traverse
it and return the appropriate values. The fact that these methods do not modify the
content variable is reflected in the absence of a modifies clause from the contracts of
these methods. These methods also happen to have no precondition, so their precondition
is implicitly assumed to be the formula True.

Because member and getSize return values depending on the data structure content,
these methods illustrate why the approach based on ghost variables is sound. Namely, to
prove the postconditions of member and getSize methods, it is necessary to assume the class
invariants. As the simplest example, proving the postcondition of getSize relies on sizeInv ;
in the absence of sizeInv, the size field could be an arbitrary integer field unrelated to the
data structure content. Similarly, in the absence of contentDef it would be impossible to
prove any relationship between the result of the member method and the value of content.
Once the user introduces these class invariants, the addNew method must preserve them.
This means that addNew must maintain content according to contentDef when nodes or
data change, and maintain nodes according to nodesDef when root or next change.

The implementation of the member method also illustrates the use of loop invariants and
local ghost variables. In general, I assume that the developer has supplied loop invariants
for all loops of the methods being analyzed. (Jahob does have techniques for loop invariant
inference [254], but they are outside the scope of this dissertation.) A loop invariant is
stated before the condition of the while loop. The purpose of the local ghost variable
seen is to denote the nodes that have been already traversed in the loop. This purpose is
encoded in the second conjunct of the loop invariant. In addition to the definition of seen,
the loop invariant for the member method states that the local variable current belongs to
the nodes of the list (and is therefore reachable from the root), unless it is null. The last
conjunct of the loop invariant states that the parameter object x is not in the portion of
the list traversed so far. The key observation, stated by the noteThat statement after the
loop, is that, when the loop terminates, seen = nodes, that is, seen contains all nodes in
the list. From this observation and the final conjunct of the loop invariant Jahob proves
that returning false after the end of the loop implies that the element is not in the list.

20

www.manaraa.com

Proving that the result is correct when the element is found follows from the class invariants
and the first conjunct of the loop invariant.

2.4 Generating Verification Conditions in Jahob

I next illustrate how Jahob generates a formula stating that a method to be verified 1) con-
forms to its explicitly supplied contract, 2) preserves the class invariants, and 3) never
produces run-time errors such as a null dereference.

Translation to guarded command language. Like ESC/Java [96], Jahob first trans-
forms the annotated method into a guarded command language. Figure 2-4 shows the
sequence of guarded commands resulting from the translation of the addNew procedure.
Note that preconditions and class invariants become part of the assume statement at proce-
dure entry (Lines 3–10). Similarly, the postcondition and the class invariants become part
of an assert statement at the end of the procedure (Lines 35-42). The assume statements
in Lines 11–13 encode the fact that parameters and local variables 1) have the correct type
(for example, n1 \〈in〉 List), and 2) point to allocated objects.

Jahob models allocated objects using the variable Object.alloc, which stores cur-
rently allocated objects. (Figure 2-4 denotes this variable as Object alloc, replacing the
occurrences of “.” in all identifiers with “ ” for compatibility with Isabelle/HOL.). Jahob
assumes that allocated objects include null, but not the objects that will be allocated in
the future. Lines 15–23 are the result of translation of the statement n1 = new List() of
the addNew procedure. The havoc statement non-deterministically changes the value of the
temporary variable tmp 1; the subsequent assume statement assumes that the object is not
referenced by any other object and that its fields are null. Together, these two statements
have the effect of picking a fresh unallocated object. The assignment statement in Line 22
then extends the set of currently allocated objects with the fresh object, and Line 23 assigns
the fresh object to the variable n1.

Lines 24–25 are the translation of the field assignment n1.next=root. Line 24 is an
assertion that checks that n1 is not null, whereas Line 25 encodes the change to the next

field using the function update operator that changes the function at a given argument. The
translation of n1.data=x is analogous. Finally, Jahob translates the noteThat statement
into an assert statement followed by an assume statement with the identical formula.

Verification condition generation. Figure 2-5 shows the verification condition corre-
sponding to the guarded commands in Figure 2-4. Jahob computes the verification condition
as the weakest precondition of the guarded command translation with respect to the pred-
icate True. The computation uses standard rules for weakest precondition computation
where assume becomes an assumption in an implication, assert becomes a conjunction,
assignment becomes substitution, and havoc introduces a fresh variable.

The resulting verification condition therefore mimics the guarded commands themselves,
but is expressed entirely in terms of the program state at procedure entry. When comparing
Figure 2-5 to Figure 2-4, note that Jahob replaces the transitive closure of a binary rela-
tion with the transitive closure of a binary predicate, denoted by the rtrancl pt operator.
Furthermore, to allow references to old versions of variables, Jahob replaces each identifier
old id with the identifier id in the final verification condition. The result is identical to
saving the values of all variables using a sequence of assignments of the form old id := id

at the beginning of the translated procedure.

21

www.manaraa.com

1 public proc List.addNew(x : obj) : unit
2 {
3 assume ProcedurePrecondition: ”comment ’’xFresh’’ (x \〈notin〉 List content)
4 \〈and〉 comment ’’List PrivateInvnodesDef’’ (List nodes = ...)
5 \〈and〉 comment ’’List PrivateInvcontentDef’’ (List content = ...)
6 \〈and〉 comment ’’List PrivateInvsizeInv ’’ (List size = cardinality List content)
7 \〈and〉 comment ’’List PrivateInvtreeInv’’ (tree [List next])
8 \〈and〉 comment ’’List PrivateInvrootInv’’ ((List root \〈noteq〉 null) −−> ...)
9 \〈and〉 comment ’’List PrivateInvnodesAlloc’’ (List nodes \〈subseteq〉 Object alloc)

10 \〈and〉 comment ’’List PrivateInvcontentAlloc’’ (List content \〈subseteq〉 Object alloc)”;
11 assume x type: ”(x \〈in〉 Object) \〈and〉 (x \〈in〉 Object alloc)”;
12 assume tmp 1 type: ”(tmp 1 \〈in〉 List) \〈and〉 (tmp 1 \〈in〉 Object alloc)”;
13 assume n1 type: ”(n1 \〈in〉 List) \〈and〉 (n1 \〈in〉 Object alloc)”;
14 havoc tmp 1;
15 assume AllocatedObject: ”(tmp 1 \〈noteq〉 null)
16 \〈and〉 (tmp 1 \〈notin〉 Object alloc)
17 \〈and〉 (tmp 1 \〈in〉 List)
18 \〈and〉 (\〈forall〉 y. ((List next y) \〈noteq〉 tmp 1))
19 \〈and〉 (\〈forall〉 y. ((List data y) \〈noteq〉 tmp 1))
20 \〈and〉 (List next tmp 1 = null)
21 \〈and〉 (List data tmp 1 = null)”;
22 Object alloc := ”Object alloc \〈union〉 {tmp 1}”;
23 n1 := ”tmp 1”;
24 assert ObjNullCheck: ”n1 \〈noteq〉 null”;
25 List next := ”List next(n1 := List root)”;
26 assert ObjNullCheck: ”n1 \〈noteq〉 null”;
27 List data := ”List data(n1 := x)”;
28 List root := ”n1”;
29 tmp 2 := ”List size + 1”;
30 List size := ”tmp 2”;
31 List nodes := ”{n1} \〈union〉 List nodes”;
32 List content := ”{x} \〈union〉 List content”;
33 assert sizeOk: ”comment ’’sizeInv’’ (List size = cardinality List content)” from sizeInv, xFresh;
34 assume sizeOk: ”comment ’’sizeInv’’ (List size = cardinality List content)”;
35 assert ProcedureEndPostcondition: ”List content = (old List content \〈union〉 {x})
36 \〈and〉 comment ’’List PrivateInvnodesDef’’ (List nodes = ...)
37 \〈and〉 comment ’’List PrivateInvcontentDef’’ (List content = ...)
38 \〈and〉 comment ’’List PrivateInvsizeInv ’’ (List size = cardinality List content)
39 \〈and〉 comment ’’List PrivateInvtreeInv’’ (tree [List next])
40 \〈and〉 comment ’’List PrivateInvrootInv’’ ((List root \〈noteq〉 null) −−> ...)
41 \〈and〉 comment ’’List PrivateInvnodesAlloc’’ (List nodes \〈subseteq〉 Object alloc)
42 \〈and〉 comment ’’List PrivateInvcontentAlloc’’ (List content \〈subseteq〉 Object alloc)”;
43 }

Figure 2-4: Guarded command version of addNew from Figure 2-3

22

www.manaraa.com

Note that the resulting verification condition includes quantifiers, reachability proper-
ties, as well as cardinality constraints on sets. The main contribution of this dissertation
are techniques for proving the validity of such formulas.

2.5 Proving Formulas using Multiple Reasoning Procedures

Jahob’s approach to proving the validity of complex verification conditions is to split the
verification condition into multiple conjuncts and prove each conjunct using a potentially
different automated reasoning procedure. I illustrate this approach on the verification con-
dition from Figure 2-5.

Splitting into conjuncts. Splitting transforms a formula into multiple conjuncts using a
set of simple equivalence-preserving rules. One such rule transforms A→ (B ∧ C) into the
conjunction of A→ B and A→ C. Jahob uses such rules to split the verification condition
of Figure 2-5 into 10 different conjuncts. It is possible to identify these conjuncts from the
guarded commands of Figure 2-4 already:

• The two “ObjNullCheck” assert statements generate identical subformulas in the
verification condition, which Jahob detects during the construction of the verification
condition and generates only one subformula in Figure 2-5. This subformula leads to
one conjunct during splitting;

• The sizeOk assertion generates the second conjunct;

• The remaining 8 conjuncts are in the assert statement corresponding to the end of
the procedure: one is for the explicit postcondition of the procedure, and one is for
each of the 7 class invariants.

Each of the conjuncts generated by splitting has the form A1∧. . . An → B where A1, . . . , An

are assumptions and B is the goal of the conjunct. I call the generated conjuncts “sequents”
by analogy with the sequent calculus expressions A1, . . . , An ⊢ B (but I do not claim any
deeper connections with the sequent calculus).

Proving individual conjuncts. As Figure 2-1 indicates, Jahob takes advantage of four
techniques to prove the 10 sequents generated by splitting.

1. Jahob’s built-in validity checker uses simple syntactic matching to prove 2 sequents:
the absence of null dereference and the fact that the noteThat statement implies that
sizeInv invariant holds in the postcondition. In both of these sequents, the goal occurs
as one of the assumptions, so a simple syntactic check is sufficient. Figure 2-6 shows
the sequent corresponding to the check for absence of null dereference.

2. Jahob uses an approximation using monadic second-order logic (Chapter 6) and the
MONA decision procedure [143] to prove two sequents that require reasoning about
transitive closure: the preservation of the nodesDef invariant and the preservation of
the treeInv invariant. Figure 2-7 shows the sequent for the preservation of nodesDef
invariant.

3. Jahob uses a translation into Boolean Algebra with Presburger Arithmetic (Chapter 7)
to prove the noteThat statement sizeOk from the precondition xFresh and the fact
that sizeInv holds in the initial state. Figure 2-8 shows the corresponding sequent.

23

www.manaraa.com

List root ∈ List ∧
comment“Precondition”

(comment“xFresh” (x /∈ List content) ∧
comment“List PrivateInvnodesDef”

List nodes = {n. n 6= null ∧ (rtrancl pt(λuv.List nextu = v) List rootn)} ∧
comment“List PrivateInvcontentDef”

List content = {x. ∃n. x = List datan ∧ n ∈ List nodes} ∧
comment“List PrivateInvsizeInv”(List size = cardinality List content)∧
comment“List PrivateInvtreeInv”(tree [List next])∧
comment“List PrivateInvrootInv”

(List root 6= null → (∀n. List nextn 6= List root))∧
comment“List PrivateInvnodesAlloc”(List nodes ⊆ Object alloc) ∧
comment“List PrivateInvcontentAlloc”(List content ⊆ Object alloc)) ∧

comment“x type”(x ∈ Object ∧ x ∈ Object alloc) ∧
comment“AllocatedObject”(tmp 1 10 6= null ∧

tmp 1 10 /∈ Object alloc ∧
tmp 1 10 ∈ List ∧
(∀y.List next y 6= tmp 1 10) ∧
(∀y.List data y 6= tmp 1 10) ∧
List next tmp 1 10 = null ∧
List data tmp 1 10 = null)

−→
(comment“ObjNullCheck”(tmp 1 10 6= null) ∧

comment“sizeOk FROM:sizeInv,xFresh”(comment“sizeInv”
List size + 1 = cardinality ({x} ∪ List content)) ∧

(comment“sizeOk”(comment“sizeInv”(List size + 1 = cardinality ({x} ∪ List content))
−→
comment“ProcedureEndPostcondition”
({x} ∪ List content = List content ∪ {x} ∧

comment“List PrivateInvnodesDef”({tmp 1 10} ∪ List nodes = {n.n 6= null ∧
(rtrancl pt(λuv.((List next(tmp 1 10 := List root))u = v)) tmp 1 10 n)}) ∧

comment“List PrivateInvcontentDef”({x} ∪ List content =
{x 6. ∃n. x 6 = (List data(tmp 1 10 := x))n ∧ n ∈ ({tmp 1 10} ∪ List nodes)}) ∧

comment“List PrivateInvsizeInv”(List size + 1 = cardinality ({x} ∪ List content)) ∧
comment“List PrivateInvtreeInv” (tree [(List next(tmp 1 10 := List root))])∧
comment“List PrivateInvrootInv”

tmp 1 10 6= null→ (∀n.(List next(tmp 1 10 := List root))n 6= tmp 1 10) ∧
comment“List PrivateInvnodesAlloc”

({tmp 1 10} ∪ List nodes ⊆ Object alloc ∪ {tmp 1 10}) ∧
comment“List PrivateInvcontentAlloc”

({x} ∪ List content ⊆ Object alloc ∪ {tmp 1 10})))))

Figure 2-5: Verification condition for guarded commands in Figure 2-4

24

www.manaraa.com

List root ∈ List ∧
comment“xFresh” (x /∈ List content) ∧
comment“List PrivateInvnodesDef”

List nodes = {n. n 6= null ∧ (rtrancl pt(λuv.List nextu = v) List rootn)} ∧
. . .
comment“AllocatedObject”(tmp 1 10 6= null) ∧
. . .
comment“AllocatedObject”(List data tmp 1 10 = null)
−→ comment“ObjNullCheck”(tmp 1 10 6= null)

Figure 2-6: Null dereference proved using Jahob’s built-in validity checker

. . .
comment“List PrivateInvnodesDefPrecondition”

List nodes = {n. n 6= null ∧ (rtrancl pt(λuv.List nextu = v) List rootn)} ∧
. . .
comment“List PrivateInvtreeInvPrecondition”(tree [List next]) ∧
. . .
comment“AllocatedObject”(∀y.List next y 6= tmp 1 10) ∧
comment“AllocatedObject”(List next tmp 1 10 = null)
. . .
−→ comment“List PrivateInvnodesDef”({tmp 1 10} ∪ List nodes =
{n. n 6= null ∧ (rtrancl pt(λuv.((List next(tmp 1 10 := List root))u = v)) tmp 1 10 n)})

Figure 2-7: Preservation of nodesDef invariant proved using MONA (Chapter 6)

comment“xFreshPrecondition” (x /∈ List content) ∧
comment“List PrivateInvsizeInv”(List size = cardinality List content)
−→ comment“sizeOk sizeInv”(List size + 1 = cardinality ({x} ∪ List content))

Figure 2-8: Proving noteThat statement using BAPA decision procedure (Chapter 7)

. . .
comment“List PrivateInvcontentDef”

List content = {x. ∃n. x = List datan ∧ n ∈ List nodes} ∧
. . .
comment“List PrivateInvnodesAlloc”(List nodes ⊆ Object alloc) ∧
. . .
comment“AllocatedObject”(tmp 1 10 /∈ Object alloc)
. . .
−→ comment“List PrivateInvcontentDef”({x} ∪ List content =
{x 6. ∃n. x 6 = (List data(tmp 1 10 := x))n ∧ n ∈ ({tmp 1 10} ∪ List nodes)})

Figure 2-9: Preservation of contentDef invariant proved using SPASS (Chapter 5)

25

www.manaraa.com

The effect of the noteThat statement is to indicate which assumptions to use to prove
that sizeInv continues to hold. After proving the noteThat statement, the formula
becomes an assumption and the built-in validity checker proves the fact that sizeInv
holds at the end of the procedure using simple syntactic matching, as noted above.

4. Jahob proves the remaining 5 sequents by approximating them with first-order logic
formulas (Chapter 5) and using the first-order theorem prover SPASS [248]; these
sequents do not require reasoning about transitive closure or reasoning about the
relationship between sets and their cardinalities. Figure 2-9 displays one of these
sequents: the preservation of the contentDef invariant.

In the following chapters I first give an overview of Jahob’s specification language and the
process of generating verification conditions from annotated Java programs. I then focus
on the techniques for proving the validity of verification conditions.

26

www.manaraa.com

Chapter 3

An Overview of the Jahob

Verification System

In this chapter I give an overview of the front end of the Jahob verification system. The
goal of this chapter is to set the stage for the results in subsequent chapters that deal with
reasoning about the validity of formulas arising from verification. Section 3.1 outlines the
Java subset that Jahob uses as the implementation language. This subset supports the cre-
ation of an unbounded number of data structures containing mutable references and arrays,
allowing Jahob users to naturally write sequential imperative data structures. Section 3.2
presents Jahob’s specification constructs that allow the users to specify desired properties
of data structures using an expressive language containing sets, relations, quantifiers, set
comprehensions, and a cardinality operator. I describe the meaning of annotations such as
preconditions, postconditions, and invariants, leaving the description of formulas to Chap-
ter 4. Section 3.3 summarizes the process of generating verification conditions from Jahob
annotations and implementations. Section 3.4 reviews some previous program verification
systems. I conclude in Section 3.5 with an outline of the architecture of the current Jahob
implementation and its relationship to different chapters of this dissertation.

3.1 Implementation Language Supported by Jahob

Jahob’s current implementation language is a a sequential, imperative, and memory-safe
language that supports references, integers, and arrays. Syntactically, the language is a
subset of Java [112]. It does not support reflection, dynamic class loading, multi-threading,
exceptions, packages, subclassing, or any new Java 1.5 features. Modulo these restrictions,
the semantics of Jahob’s implementation language follows Java semantics. In fact, because
all Jahob specification constructs are written as Java comments, the developers can use
both Jahob and existing compilers, virtual machines, and testing infrastructure on the
same source code.

Apart from multi-threading, the absence of Java features in Jahob’s implementation
language does not prevent writing key data structures and exploring their verification.
Support for concurrent programming is the subject for future work, but would be possible
using current techniques if the language is extended with a mechanism for ensuring atomicity
of data structure operations [8, 9, 121].

27

www.manaraa.com

annotation ::= "/*:" specifications "*/"

| "//:" specifications EOL

specifications ::= (specification[;])∗

specification ::= contract | specvarDecl | vardefs | invariant

| assert | assume | noteThat | specAssign | claimedby | "hidden"

contract ::= [precondition] [frameCondition] postcondition

precondition ::= "requires" formula

frameCondition ::= "modifies" formulaList

postcondition ::= "ensures" formula

specvarDecl ::= ("public" | "private")["static"] ["ghost"]
"specvar" ident "::" typeFormula [initialValue]

initialValue ::= "=" formula

vardefs ::= "vardefs" defFormula(defFormula)∗

invariant ::= ["public" ["ensured"] | "private"] "invariant" labelFormula

assert ::= "assert" labelFormula ["from" identList]

assume ::= "assume" labelFormula

noteThat ::= "noteThat" labelFormula ["from" identList]

specAssign ::= formula":=" formula

claimedby ::= "claimedby" ident

formulaList ::= formula ("," formula)∗

labelFormula ::= [label] formula

label ::= ident":" | "(" string ")"

formula ::= formula as described in Section 4.1, in quotes

typeFormula ::= formula denoting a type

defFormula ::= formula of the form v==e

identList ::= ident ("," ident)∗

Figure 3-1: Syntax of Jahob Specification Constructs

3.2 Specification Constructs in Jahob

This section presents the specification constructs in Jahob. These constructs allow the
developer to specify procedure contracts and data structure invariants. The specifications in
Jahob can use developer-introduced specification variables, which enables data abstraction
and is essential for making the specification and verification tractable.

Figure 3-1 summarizes the syntax of Jahob specification constructs. Note that the de-
veloper specifies these constructs in special comments that start with a colon sign. The
special comments can only appear at appropriate places in a program, and Jahob expects
different constructs at different places of the program. For example, Jahob expects a pro-
cedure contract in a special comment after procedure header and before the opening curly
brace of the procedure body.

Many specification constructs contain formulas denoting a property of a program state

28

www.manaraa.com

or a relationship between the current and a previous program state. I defer the descrip-
tion of the syntax and semantics of formulas to Section 4.1. Following the convention in
Isabelle/Isar [200], formulas are written in quotes, which enables tools such as editors with
syntax coloring to treat formulas as atomic entities, ignoring the complexity of formula
syntax. For brevity, Jahob allows omitting quotes when the formula is a single identifier.

3.2.1 Procedure Contracts

A procedure contract in Jahob contains three parts:

• a precondition, written as a requires clause, stating the property of program state
and the values of parameters that should be true before a procedure is invoked (if the
developer states no precondition, Jahob assumes the default precondition True);

• a frame condition, written as a modifies clause, listing the components of state that
may be modified by the procedure, meaning that the remaining state components
remain unchanged (if the developer specifies no frame condition, Jahob assumes an
empty frame condition);

• a postcondition, written as an ensures clause, describing the state of the procedure
at the end of its invocation, possibly in relationship to parameters and the state at
the entry of the procedure.

Jahob uses procedure contracts for assume/guarantee reasoning in a standard way. When
analyzing a procedure p, Jahob assumes p’s precondition and checks that p satisfies its
postcondition and the frame condition. Dually, when analyzing a call to procedure p, Jahob
checks that the precondition of p holds and assumes that the values of state components
from the frame condition of p change subject only to the postcondition of p, and that
the state components not in the frame condition of p remain unchanged. (More precisely,
Jahob translates frame conditions into certain conjuncts of the postcondition, according to
the rules in Section 3.2.8, allowing a procedure to modify fields of newly created objects
without declaring them in the frame condition.)

A Jahob procedure is either public or private. The contract of a public procedure can
only mention publicly visible variables.

3.2.2 Specification Variables

The state of a Jahob program is given by the values of program’s variables. We call the
standard Java variables (static and instance fields) in a Jahob program concrete variables.
In addition to concrete variables, Jahob supports specification variables [96, Section 4],
which do not exist during program execution (except potentially for debugging or run-time
analysis purposes, which is outside the scope of this dissertation).

Declaring a specification variable. The specvarDecl non-terminal of the context-free
grammar in Figure 3-1 shows the concrete syntax for specification variables. The developer
uses specvar keyword to introduce a specification variable and specifies its type, which
must be a valid HOL formula type. Optionally, the developer can specify the initial value
of the variable, which is an HOL formula. The developer declares each variable, including
specification variables, as public or private.

Static versus non-static variables. Similarly as for concrete Java variables, the de-
veloper can declare a specification variable as static, otherwise the variable is considered

29

www.manaraa.com

non-static. If a variable is non-static, Jahob augments the variable’s type with an implicit
argument of type obj. Therefore, non-static fields in Jahob have the type of the form
obj => t for some type expression t.

Ghost versus non-ghost variables. There are two kinds of specification variables in
Jahob according to their relationship to other variables: ghost variables and non-ghost
variables.

A ghost specification variable is independent from other previously introduced variables.
The developer introduces a ghost variable using the ghost keyword in specification variable
declaration. The only way in which the value of a ghost variable v changes is in response
to a specification assignment statement of the form v := e within a procedure body. This
statement assigns to v the value of an HOL formula e. The type of e must be same as the
type of v.

A non-ghost specification variable is a function of previously introduced concrete and
specification variables. The developer introduces a non-ghost variable v using a specvar

declaration (without the ghost modifier) and then defines its value using a vardefs keyword
followed by a definition of the form v == e. Here e is an HOL formula that may contain
occurrences of other variables. The meaning of such variable is that, in every program state,
the value of v is always equal to the value of the expression e. To make sure that the values
of non-ghost variables are well-defined, Jahob requires their definitions to form an acyclic
dependency graph. In particular, v may not occur in e.

3.2.3 Class Invariants

A class invariant can be thought of as a boolean-valued specification variable that Jahob
implicitly conjoins with preconditions and postconditions of public procedures. The devel-
oper can declare a public invariant as private or public (the default annotation is private).

Private class invariants. The developer can use private class invariants to achieve one
more level of hiding compared to public specification invariants, by hiding not only the
description of a property, but also its existence. A private class invariant is visible only
inside the implementation of a class. Procedures outside C should not be able to violate
the truth value of a private invariant (a common way to establish this is that the invariant
depends only on the state encapsulated inside C). Jahob conjoins private class invariants
of a class C to preconditions and postconditions of procedures declared in C. Jahob also
conjoins a private class invariant of class C to each reentrant call to a procedure p declared
in C1 for C1 6= C to ensure soundness in the presence of callbacks. This policy ensures that
the invariant C will hold if C1.p subsequently invokes a procedure in C.

Public class invariants. A public class invariant relates values of variables visible outside
the class. A public class invariant is either ensured, if it is prefixed by the ensured keyword,
or non-ensured, otherwise.

If a public invariant I of class C is ensured, the clients of C can assume I but need not
check that I is preserved, because C by itself guarantees that I can never be violated. When
verifying class C, Jahob therefore both 1) conjoins I to preconditions and postconditions of
procedures inside C and 2) makes sure that no sequence of external actions can invalidate I.
A sufficient condition for 2) is that I only depends on parts of state that are encapsulated
inside C. A more general condition allows a public ensured invariant I to depend on
Object.alloc of all allocated objects, even though this set is not encapsulated inside C.

30

www.manaraa.com

Jahob verifies this condition by establishing that I is preserved under state changes that
change Object.alloc in a monotonic way and preserve the state encapsulated in C.

If the developer declares a public invariant I of class C as non-ensured, then the clients
of C share the responsibility for maintaining the validity of I, which means that Jahob
conjoins I to methods of clients of C as well. Public non-ensured invariants can therefore
decrease the modularity in a verification task, because they add conjuncts to the contracts
of procedures declared elsewhere.

Specifying when an invariant should hold. The developer can effectively adjust
Jahob’s simple policy for when an invariant holds, as follows.

To require an invariant to hold more frequently, the developer can explicitly restate it
using the desired annotations, such as a precondition or postcondition of a private procedure,
a loop invariant, or an assertion inside a procedure. The developer can name the invariants
to avoid restating them. Jahob’s construct (theinv L) within a formula expands into the
definition of the invariant labelled L. Alternatively, the developer can introduce a boolean
specification variable and provide the invariant as its definition.

To require an invariant I to hold less frequently, introduce a boolean-valued static ghost
variable b and restate the invariant as b→ I. To temporarily disable the invariant, perform
an abstract assignment b := False, which makes b → I trivially true without requiring I
to hold. To enable the invariant, perform an abstract assignment b := True. To enable or
disable an invariant on a per-object basis, declare b as an instance ghost variable as opposed
to a static ghost variable.

3.2.4 Encapsulating State in Jahob

Encapsulation of state in Jahob is driven by the need to prove a simulation relation [77]
between the program that uses the implementation and the program that uses the specifi-
cation of a class. When verifying a class C, Jahob establishes that the implementation of C
satisfies the public specification of C by verifying the following three conditions:

1. showing that the initial state of C satisfies class invariants of C;

2. showing that each public procedure in C preserves class invariants and establishes its
postcondition and the frame condition;

3. showing that any external sequence of actions

(a) leaves the values of specification variables of C unchanged; and

(b) preserves the class invariants.

Hiding the definition of a variable v in the public specification of a class C means that
Jahob will assume that v does not change except through invocations of procedures of C.
The condition (3) ensures that such hiding is sound. A class invariant can be thought
of as an implicit boolean-valued specification variable, so (3b) is a special case of (3a).
Jahob relies on encapsulation of state as well as the properties of Java semantics to ensure
Condition 3. The detailed description of verifying the condition 3 are beyond the scope of
this thesis; we only describe the three mechanisms that developers have at their disposal
for encapsulating state in Jahob.

Private variables. Declaring a variable private to the class makes it impossible for
methods outside the class to modify its value. Note that the value of a reference variable

31

www.manaraa.com

x is simply the object identifier, so making a reference x private does not prevent fields of
the object x from being modified from outside the class.

Claimed fields. If f is a field declared in class N the developer can make f be part of repre-
sentation of another class C by using an annotation claimedby C in front of the declaration
of f. Semantically, f is a function from objects to objects, so claimedby C declaration
corresponds to declaring such function f as a private variable inside C. Claimed fields allow
all fields of one class to be declared local to another class, which is useful for helper classes
that represent memory cells used in implementation of data structures. Claimed fields also
allow multiple classes to claim fields on one class, as in multi-module records in [54], or as
in Hob’s formats [163]. Such separation of fields is useful for modular analysis of objects
that participate in multiple data structures represented by distinct classes.

Object hiding. When building layered abstractions using instantiable data structures,
different data structure instances can occur as part of representation of different data struc-
tures. A static state partitioning mechanism such as private and claimed fields is not
sufficient to specify the representations of such layered data structures (although its power
could be substantially increased by a simple parameterization mechanism such as the one
present in parameterized ownership types [39]). To allow more flexible notations of en-
capsulation, Jahob provides a notion of a hidden set of objects. A hidden set C.hidden

associated with class C stores the set of objects that are part of the representation of the
entire class C. A method in C can add a newly allocated object to C.hidden using the
hidden modifier before the new keyword when allocating an object. The developer can use
the hidden variable in class invariants to specify, for example, that the desired reachable
objects are part of the representation of C. Jahob currently uses a simple syntactic checks
and assertions to ensure that no procedure in C leaks a reference to an object in hidden

by returning it, passing it as a parameter, or storing it in non-private fields of objects that
are not in the hidden set. Because hidden objects are allocated inside C and never leaked,
they are not observable outside C. Procedures in C can therefore omit modifications to these
objects, and C can use these objects in definitions of specification variables and invariants.

To enable the invocation of methods on such hidden objects, Jahob needs to know that
these methods do not introduce new aliases to hidden objects. More precisely, the desired
property is the following:

If the receiver parameter of a method D.p is the only way for D.p to access the
receiver object, then D.p will not introduce any new aliases to the receiver
object (by e.g. storing it into another field or global variable).

This property appears to be a good default specification for the receiver parameter. In the
data structures that I have examined it can be enforced using simple syntactic checks.

3.2.5 Annotations within Procedure Bodies

The developer can use several kinds of annotations inside a procedure body to refine the
expectations about the behavior of the code, help the analysis by stating intermediate facts,
or debug the verification process.

Loop invariant. The developer states a loop invariant of a while loop immediately after
the while keyword using the keyword invariant (or inv for short). A loop invariant must
be true before evaluating the loop condition and it must be preserved by each loop iteration.
The developer can omit from a loop invariant the conditions that depend only on variables

32

www.manaraa.com

not modified in the loop because Jahob uses a simple syntactic analysis to conclude that
the loop preserves such conditions. In this thesis I assume that the developer has supplied
all loop invariants, although Jahob contains a specialized loop invariant inference engine
[254, 253, 211].

Local specification variables. In addition to specification variables at the class level,
the developer can introduce ghost or non-ghost specification variables that are local to a
particular procedure and are stated syntactically as statements in procedure body. Such
variables can be helpful to state relationships between the values of variables at different
points in the program, and can help the developer or an automated analysis in discovering
a loop invariant.

Specification assignment. A specification assignment changes the value of a ghost
specification variable. If x is a variable and f a formula, then a specification assignment
x := e changes the value of x to the value of formula e. Jahob also supports a field
assignment of the form x.f := e which is a shorthand for f := f(x := e) where the
second occurrence of := denotes the function update statement (see Figure 4-3).

Assert. An assert e annotation at program point p in the body of the procedure requires
the formula e formula to be true at the program point p. The developer can use an assert
statement similarly to Java assertions that produce run-time checks. An important differ-
ence is that a Jahob assertion produces a proof obligation that guarantees that e will be true
in all program executions that satisfy the precondition of the procedure, and not merely in
those preconditions that are exercised during a particular finite set of program executions.
Another difference compared to Java assertions is that the condition being checked is given
as a logical formula instead of a Java expression.

Assume. An assume e statement is dual to the assert statement. Whereas an assert
requires the verification system to demonstrate that e holds, an assume statement allows
the verification system to assume that e is true at a given program point. Note that
developer-supplied use of assume statements violates soundness. The intended use of assume
is debugging, because it allows the system to verify a procedure under the desired restricted
conditions. For example, a specification statement assume "False" at the beginning of a
branch of if statement means that the system will effectively skip the verification of that
branch.

NoteThat. A noteThat e statement is simply a sequential composition of assert e fol-
lowed by assume e. It is always sound for the developer to introduce a noteThat statement
because the system first checks the condition e before assuming it. Therefore, noteThat e

is semantically equivalent to assert e, but instructs the verification system to use e as a
useful lemma in proving subsequent conditions.

Specifying assumptions to use. noteThatf and assert f statements can optionally use
a clause from l1, . . . , ln to specify a list of labels that identify the facts from which the formula
f should follow. This construct can be very helpful when the number and the complexity of
the invariants becomes large. The identifiers li can refer to the labels of facts introduced by
any previous noteThat and assume statements, preconditions, invariants, or the conditions
encoding a path in the program. Currently, Jahob implements this mechanism as follows.
Before proving a sequent, Jahob removes all sequent assumptions whose comment does not
contain as a substring any of the identifiers l1, . . . , ln.

33

www.manaraa.com

3.2.6 Meaning of Formulas

This section summarizes key aspects of the semantics of formulas in Jahob annotations.

Interpreting state variables in a formula. Formulas in Jahob annotations can men-
tion state variables of the Jahob program, such as instance field names, static variables,
parameters, local variables, as well as the developer-supplied specification variables. As
in standard Hoare logic [122], a program variable in a formula typically denotes variable’s
value in the current state of the program. For an annotation at program point p inside
procedure body, the current state is the state at program point p. For a precondition, the
current state is the state at procedure entry, and for postcondition the current state is the
state at the end of procedure execution. For a class invariant, the current state is given by
the annotation to which the invariant is conjoined: when the invariant becomes part of a
precondition, then the current state is the state at procedure entry, and when it becomes
part of a postcondition, the current state is the state at procedure end. The value of a
specification variable with a definition v==e in a given state is the value of the expression e

in the same state.

old construct. Procedure postcondition and the annotations within procedure body often
need to refer to the value of a variable at the entry of the currently executing procedure.
Writing an operator old in front of a variable name allows the developer to denote the value
of the variable at procedure entry. For example, a formula x = 1 + old x in procedure
postcondition denotes the fact that the procedure increases the value of the variable x by
one. As a shorthand, Jahob allows the developer to apply the construct old to expressions
as well. The value of such expression is given by propagating the old operator to the
identifiers within the expression, so old (x + y) denotes old x + old y.

Representing memory cells. In Jahob terminology, the notion of an object approxi-
mately corresponds to what Java calls a reference: an object is merely given by its unique
identifier and not by the content of its fields. Jahob represents a field of a class as a function
mapping objects to objects or integers. Jahob’s logic is a logic of total functions, so the
value of a field is defined even for the null object. For concreteness, Jahob assumes that
f null = null for a field f mapping objects to objects. All objects, regardless of their
class, have type obj in specifications. Jahob represents classes as immutable sets of objects:
if the dynamic type of a Java object x is C or a subclass of C, then x:C holds.

Dereferencing. If x is an object and f is a field, then f x denotes the value of f for
the object x. Jahob’s language also supports postfix notation for functions, x..f, making
specifications resemble the corresponding Java expression x.f. Note that Jahob uses the
single dot “.” to qualify names of variables (including fields), so if f is a field declared in
class C then C.f is used outside C to unambiguously denote the name of the field. Therefore,
the expression x..C.f denotes the value of the Java expression x.f. The type system of
Jahob formulas allows applying any field to any object; when object x has no field f during
Java program execution, Jahob assumes that x..f = null.

Semantics of object allocation. Jahob assumes that the set of all objects in the universe
is a fixed finite set that does not change, but whose size is not known. This model provides
simple semantics for reasoning about values of fields of objects at different program points.
The set of all objects (and, therefore, the scope of all quantifiers that range over objects)
is the same at every program point. To model object allocation, Jahob uses a special set
of objects called Object.alloc that stores all objects that have been allocated (including

34

www.manaraa.com

the special null object). Jahob considers null to be an allocated object as a matter
of convenience: with this assumption, all static variables, parameters, and local variables
point to allocated objects, and all fields of allocated objects point to allocated objects. In
addition to allocated objects, Jahob allows the existence of non-null objects that are yet
to be allocated, which we call simply unallocated objects. The object allocation statement,
given by the parameterless new C() statement in Java that invokes the default constructor,
non-deterministically selects an unallocated object and inserts it into the set Object.alloc.
Note that the developer can always avoid relying on the existence of unallocated objects by
explicitly guarding the quantification over objects by membership in Object.alloc.

3.2.7 Receiver Parameters

Java supports implicit receiver parameters in methods and denotes them by the this key-
word. Furthermore, it allows writing f instead of this.f. In the same spirit, Jahob
supports receiver parameters in specifications. Before the verification process Jahob makes
receiver parameters explicit by translating each instance method into a procedure that has
an additional parameter named this.

Implicit receiver parameter in formulas. When Jahob finds an occurrence of a non-
static variable f in a formula (regardless of whether it is a specification variable or a concrete
variable), and the occurrence is not of the form x..f for some expression x, Jahob will
replace the occurrence of f with this..f. Jahob performs this replacement in preconditions,
postconditions, frame conditions, class invariants, specification variable definitions, and
annotations within procedure bodies. The developer can prevent the addition of the receiver
parameter by fully qualifying f as C.f where C is the class where the field f is declared.

Implicit receiver in non-static specification variables. When a developer intro-
duces a non-static specification variable of a declared type t, Jahob transforms the type
into obj => t where the new argument denotes the receiver parameter. Moreover, if
the developer introduces a definition v==e for such a variable, Jahob transforms it into
v==(\<lambda> this. e), supplying the binding for any occurences of the receiver param-
eter in e. (These occurrences can be explicit or introduced by the previous transformation.)

Implicit universal quantification of class invariants. When a class invariant I of
a class C contains an (implicit or explicit) occurrence of the receiver parameter, Jahob
transforms it into the invariant

ALL this. this : Object.alloc & this : C --> I

stating that the invariant holds for all allocated objects of the class C. In this way, Jahob
reduces the invariant on individual objects to a global invariant, which is flexible and simple,
although it generates proof obligations with universal quantifiers. The fact that the bound
variable this ranges only over allocated objects means that a class invariant on an instance
field need not hold in the initial state of an object. It suffices that a method p that allocates
an object x establishes the invariant for x by the end of the execution of p and before any
other method calls within p.

3.2.8 Meaning of Frame Conditions

When interpreting a procedure contract, Jahob transforms the frame condition into a for-
mula f stating that certain parts of program state remain the same. Jahob then conjoins
f to the postcondition of the contract.

35

www.manaraa.com

x.f = y f := f(x := y)

a[i] = b arrayState := arrayState(a := (arrayState a)(i := b))

Figure 3-2: Transformations of Assignments using Function Update

A frame condition specification is a list of expressions, syntactically written using the
same syntax for formula as in, for example, assert statements. However, Jahob interprets
these formulas differently than formulas in other annotations: each frame condition formula
denotes a set of memory locations. If the formula is a variable v, the interpretation is the
set of all locations corresponding to this variable (this is a bounded set for variables of type
obj or int, or a statically unbounded set if v is the name of a field). Writing the field name
C.f in a frame condition, where C is a class name, indicates that the procedure may modify
the f field of all allocated objects of class C. To indicate that the procedure modifies the
field f only for a specific object x, the developer can use the frame condition x..f. Note
that, for non-static methods, writing the name of a field f by itself (as opposed to x..f or
C.f) in frame condition causes Jahob to expand f to this..f.

Jahob’s frame condition constructs currently have limited expressive power. However,
the developer can always write an overapproximation of the desired set of modified locations
(because the set of all fields and global variables is finite). After overapproximating this
set of locations, the developer can restrict this set by explicitly stating in the postcondition
that the desired values are preserved, using the full expressive power of Jahob’s logic and
the old construct to refer to the initial values of variables.

The encapsulation of state means that Jahob uses a slightly different formula f when
proving the postcondition at the end of the procedure and when assuming the postcondition
after a procedure call. This difference allows a procedure p in class C to implicitly modify
certain locations without mentioning them in the frame condition. These locations include
private and claimed variables, any objects that p allocates during its execution, and any
objects that are in C.hidden. When analyzing a procedure call to p from a class D different
from C, Jahob can soundly ignore these implicit modifications. When, on the other hand,
analyzing a potentially reentrant call inside a procedure of class C, Jahob must take into
account these modifications of private state of C to ensure soundness.

3.3 Generating Verification Conditions

This section describes the process of generating verification conditions, which are proof obli-
gations that entail that Jahob procedures correctly implement their specification, preserve
class invariants, and cause no run-time errors. I start with a brief summary of transforma-
tion of the input language into a guarded-command language, then focus on transforming
the guarded-command language into logical formulas in the presence of specification vari-
ables.

3.3.1 From Java to Guarded Command Language

Jahob first transforms the annotated Java input program into a guarded-command language
with loops and procedure calls. This translation flattens Java expressions by introducing
fresh variables, converts the expressions to HOL formulas, and inserts assertions that check

36

www.manaraa.com

c ::= x := formula (assignment statement)
| havoc x (non-deterministic change of x)
| assume formula (assume statement)
| assert formula (assert statement)
| c1 ; c2 (sequential composition)
| c1� c2 (non-deterministic choice)

Figure 3-3: Loop-free guarded-command language

wlp(havoc x,G) ≡ ∀x. G

wlp(assert F,G) ≡ F ∧G

wlp(assume F,G) ≡ F → G

wlp(c1 ; c2, G) ≡ wlp(c1,wlp(c2, G))

wlp(c1� c2, G) ≡ wlp(c1, G) ∧ wlp(c2, G)

Figure 3-4: Weakest Precondition Semantics

for run-time errors such as null dereference, array out of bounds access, and type cast
failure.

During this transformation Jahob also maps field assignments and array assignments
into assignments to state variables, using the rules in Figure 3-2. Jahob treats a field f
as a function mapping objects to objects, so a field assignment to x.f translates into an
assignment that assigns to f the function updated at point x. Similarly, Jahob represents
the content of all arrays as a function arrayState that maps an object a and an array index
i to the content (arrayState a i) of the array object a at index i. An assignment to array
therefore updates arrayState at object a and index i.

Jahob uses loop invariants to eliminate loops from the guarded command language using
loop desugaring similar to [98, Section 7.1]. Furthermore, Jahob replaces each procedure
call p with guarded command statements that over-approximate procedure call using the
contract of p. Figure 3-3 shows the syntax of the resulting loop-free guarded-command
language.

3.3.2 Weakest Preconditions

Figure 3-4 shows the standard weakest precondition semantics of the guarded-command
language in Figure 3-3. For exposition purposes we omit the assignment statement from
the guarded-command language and instead represent x := e as

havoc x; assume (x = e)

where e does not contain variable x.

Jahob generates a proof obligation for the correctness of a procedure as a weakest pre-
condition of a guarded-command language command corresponding to the procedure. The
rules in Figure 3-3 show a close correspondence between the guarded command language
and the generated logical formulas. The weakest preconditions for the guarded-command

37

www.manaraa.com

language are conjunctive [20], meaning that, for every guarded command c, the function
λF.wlp(c, F) is a morphism that distributes (modulo formula equivalence) over finite and
infinite conjunctions. Note that Jahob’s reasoning procedures can skolemize the quanti-
fiers introduced by the havoc statements, because these quantifiers occur positively in the
verification condition.

3.3.3 Handling Specification Variables

In the presence of dependent (non-ghost) specification variables, weakest precondition com-
putation must take into account variable dependencies.

Limitation of the substitution approach. A simple way to address variable depen-
dencies is to substitute in all relevant definitions of dependent variables before computing
weakest preconditions. Such approach is sound and we have used it in [267]. However, this
approach would prevent Jahob’s reasoning procedures from taking full advantage of abstrac-
tion, and would limit the possibilities for synergy between different reasoning techniques.
For example, a decision procedure for BAPA can prove properties such as |A∪B| ≤ |A|+|B|,
but is not directly applicable if the sets A,B are expanded by their definitions in terms of,
for example, reachability in a graph.

Encoding dependencies into guarded commands. Jahob produces verification con-
ditions that preserve dependent variables. The key observation of this approach is that a
dependent variable x behaves like a ghost variable with implicit updates that occur when-
ever one of the variables affecting the definition of x changes. We say that a variable x
depends on a variable y if x occurs in the formula defining the value of y; transitive depen-
dency is the transitive closure of this relation on variable names. (Jahob requires variable
definitions to have no cyclic dependencies.)

For each statement havoc y in the guarded-command language Jahob’s verification con-
dition generator therefore finds all variables x1, . . . , xn transitively affected by the change of
y. Let fi be the definition of variable xi for 1 ≤ i ≤ n. The verification condition generator
then works as if each havoc y was implicitly followed by

havoc x1;

. . .

havoc xn;

assume (x1 = f1);

. . .

assume (xn = fn)

To eliminate some of the unnecessary assumptions, the verification condition generator
potentially reorders the statements assume (xi = fi) and introduces each assume statement
assume (xi = fi) on demand, only when the variable xi occurs in the second argument of
wlp in Figure 3-4.

3.3.4 Avoiding Unnecessary Assumptions

The verification condition generator also contains a general-purpose mechanism for dropping
certain assumptions to reduce the size of generated verification conditions. The transfor-
mations into guarded-command language can designate each assume statement as being

38

www.manaraa.com

“about a variable x”. For example, Jahob considers assume statements of the form x : C
where C is a class name and x a local variable, to be “about variable” x. The verification
condition generator soundly approximates the computation of wlp(assume f,G) with a po-
tentially stronger statement G when the assume f statement is designated as being about
a variable x that does not occur in G. Such elimination of unnecessary assumptions not
only makes verification conditions easier to prove automatically, but also makes them more
readable, which is important for interactive theorem proving and error diagnosis.

3.4 Related Work

I next discuss existing software verification systems and their relationship to Jahob. I leave
the discussion of the logics used in specification languages to Section 4.5 and leave the
discussion of particular reasoning techniques (along with the results achieved using them)
to Section 5.11, Section 6.5, and Section 7.10.

Software verification tools. Software verification tools based on verification condition
generation and theorem proving include the Program Verifier [141], Gypsy [109], Stanford
Pascal Verifier [195], VDM [135], the B method [2], RAISE [73], Larch [116], Krakatoa
[92, 178], Spec# [28], ESC/Modula-3 [83], ESC/Java [96], ESC/Java2 [51], LOOP [133],
KIV [25], KeY [4]. Notations such as Z [255] are also designed for formal reasoning about
software, with or without tool support. In the subsequent chapters I show that Jahob
provides additional levels of automation in comparison to most of these tools, at least for
properties naturally expressible in first-order logic, monadic second-order logic of tree-like
graphs, and Boolean Algebra with Presburger Arithmetic, as well as for combinations of
such properties.

Counterexample search. Alloy notation [131] enables formal descriptions of software
designs and is supported by a finite model generator based on translation to propositional
logic [242]. Alloy has also been applied to the analysis of software implementations [80].
Like approaches based on model checking of software [118, 66, 192, 107], and run-time
checking [53, 79] combined with test generation [179], Alloy tool can identify violations of
specification in rich specification languages, but does not guarantee the absence of infinite
classes of bugs as the verification approaches.

Proving the absence of run-time errors. ESC/Modula-3 [83] and ESC/Java [96]
emphasize usability over soundness and use loop unrolling to permit users to omit loop
invariants. Techniques such as [95, 97] can infer loop invariants for some simple properties,
but have not been proven to work on complex data structures. SparkAda [99] reports a
high success rate on statically proving the absence of run-time errors. Our experience with
Jahob suggests that a high percentage of errors are easy to prove because they follow from
preconditions and path conditions for conditional branches, but the remaining small per-
centage requires complex data structure invariants and therefore requires more sophisticated
analyses (such as shape analyses discussed in subsequent chapters of this dissertation).

Methodology for specifying object-oriented programs. Although data refinement
methods have been studied in detail [77], their practical application to object-oriented pro-
grams is still the subject of ongoing research. The difficulty arises from the desire to extend
the notion of simulation relations to the scenario with an unbounded number of instantiated
mutable objects which have pointers to auxiliary objects. Ownership types [39] can indicate
the relationship between the object and its auxiliary objects. Ownership types were used to

39

www.manaraa.com

prove specialized classes of properties, but they would be useful in the context of Jahob as
well as a generalization of Jahob’s claimedby construct. Another way of making claimedby

construct more general would be to incorporate constructs such as scopes [163] into Jahob.
Naumann and Barnett [193] make explicit the binary ownership relation that is implicit in
ownership types. As a result, it is possible to use such binary relation in the specification
language. Jahob also allows the use of the hidden set specification variable in annotations
such as invariants. However, Jahob has only one hidden set variable per module. Jahob
transforms per-object invariants into global invariants by implicitly quantifying over this

and relies on invariants to determine the constraints on state sharing between objects of the
same class. Jahob and Spec# [28] use different notions of encapsulation, which is reflected
in the semantics of procedure calls. Spec# assumes implicitly that a procedure can implic-
itly modify all objects that are “packed”, because such objects must have their invariants
preserved across procedure calls. In contrast, Jahob assumes that all objects that were allo-
cated before procedure call and are not explicitly mentioned in modifies clauses have their
fields unchanged. As a result, Jahob’s verification conditions for procedure calls are sim-
pler. On the other hand, Jahob prevents references to objects encapsulated by the hidden

construct to be visible outside the class (but allows such references to objects encapsulated
using the claimedby construct). Jahob currently prevents representation exposure using
simple syntactic checks. More flexible approaches that provide similar guarantees can be
incorporated into Jahob.

3.5 Jahob System Implementation

This completes my overview of Jahob and it’s techniques for converting annotated programs
written in a subset of Java into logical formulas. The overview omits many details, but
hopefully gives a general idea of how Jahob reduces the verification problem to the problem
of validity of HOL formulas. The remainder of this dissertation focuses on these techniques
for deciding the validity of HOL formulas. Figure 3-5 gives an overview of the techniques
implemented in Jahob and indicates the chapters in which I discuss them.

Jahob is written in Objective Caml [170], currently has about 30 thousand lines of code
(including implementation of techniques not described in this dissertation). It is under
active development and is freely available. Its goal in the near future is to remain a research
prototype for exploring verification techniques for complex program properties.

40

www.manaraa.com

Figure 3-5: Architecture of the Jahob Data Structure Analysis System

41

www.manaraa.com

42

www.manaraa.com

Chapter 4

A Higher-Order Logic and its

Automation

This chapter presents Jahob’s formula language for proof obligations and program anno-
tations, as well as my approach for proving formulas in this language. This language is a
fragment of the classical higher-order logic [11, Chapter 5]; I call it HOL and describe it
in Section 4.1. I use the standard model [11, Section 54] as the HOL semantics, where a
function type is interepreted as the set of all total functions from the domain set to the
codomain set. HOL is very expressive and directly supports reasoning about sets and re-
lations. This makes HOL appropriate for the verification methodology presented in the
previous chapter, which uses sets and relations as specification variables.

In general, proving arbitrarily complex HOL formulas requires interactive theorem prov-
ing. I therefore devote Section 4.2 to describing Jahob’s interface to the Isabelle interactive
theorem prover [201] and describe reasons why such interfaces are useful in the context of
a verification system. However, the main contributions of this dissertation are more auto-
mated techniques for proving HOL formulas, so I spend the remaining sections and chapters
on the automation problem.

My approach to automation is to develop and adapt specialized techniques for reason-
ing about fragments of HOL and then translate as much as possible from HOL into these
fragments. The idea of the translation is to soundly approximate subformulas by mapping
HOL constructs to the constructs supported in the fragment, and conservatively approxi-
mating constructs that cannot be mapped in a natural way. Section 4.3 gives a skeleton
of such translations and presents several transformations that we found generally useful
in preprocessing HOL formulas. The subsequent chapters describe particular translations
that we found useful in the Jahob system and explains how to prove the translated formu-
las. Specifically, I describe a translation into first-order logic in Chapter 5, a translation
into monadic second-order logic of trees in Chapter 6, and a translation into Boolean Al-
gebra with Presburger Arithmetic (BAPA), as well as a decision procedure for BAPA, in
Chapter 7.

4.1 Higher Order Logic as a Notation for Sets and Relations

Figure 4-1 shows the core syntax of HOL used in Jahob. The basis for Jahob’s version of
HOL is the Isabelle/HOL language described in [201]. Jahob contains only minor syntactic
sugar defined in a small theory file provided with the Jahob distribution. In general, my

43

www.manaraa.com

f ::= λx :: t. f lambda abstraction
(λ is also written \<lambda> and %)

| f1 f2 function application

| = equality

| x variable or constant

| f :: t typed formula

t ::= bool truth values

| int integers

| obj uninterpreted objects

| ’α type variable

| t1 ⇒ t2 total functions

| t set sets

| t1 ∗ t2 pairs

Figure 4-1: Core syntax of HOL

Jλx :: t. fKe = {(v, JfK(e[x := v])) | v ∈ JtK}

Jf1 f2Ke = (Jf1Ke) (Jf2Ke)

J= :: t⇒ t⇒ boolK = {f | ∀u, v ∈ JtK. (fu)v = true↔(u = v)}

JxKe = e x

Jf :: tKe = JfKe

{true, false},Z,O are pairwise disjoint sets

O is a finite set of unspecified size N

JboolK = {true, false}

JintK = Z = {. . . ,−2,−1, 0, 1, 2, . . .}

JobjK = O = {o1, o2, . . . , oN}

Jt1 ⇒ t2K = {f | f ⊆ Jt1K× Jt2K ∧ ∀x ∈ Jt1K.∃1y ∈ Jt2K. (x, y) ∈ f}

Jt setK = {f | f ⊆ JtK}

Jt1 ∗ t2K = {(x1, x2) | x1 ∈ Jt1K ∧ x2 ∈ Jt2K}

Figure 4-2: Semantics of HOL formulas and ground types

44

www.manaraa.com

intention is that the axiomatic definitions in Isabelle theory files serve as the authoritative
semantics of Jahob’s HOL.

My first goal in this section is to summarize the relevant HOL subset and to clarify the
semantics of formulas. For an introduction to classical HOL as a foundation of mathematics
see [11, Chapter 5], for an introduction to the use of HOL in program semantics see [20,
Chapter 3], and for a mechanization of HOL in the HOL system see [110]. My second goal
is to motivate the decision to use the Isabelle/HOL language as a basis for formula notation
in Jahob.

Lambda calculus core. As Figure 4-1 suggests, the basis of HOL is typed lambda calculus
[26]. The term λx :: t. f denotes a function h such such that h(x) = f for all x, where f
typically contains x as a free variable. The hx notation denotes the function application
h(x) where both h and x. In lambda calculus terminology, expressions are usually called
terms, but we call them formulas, keeping in mind that a formula can denote not only a
truth value but also a value of any other type.

Equality. Equality is a curried function of two arguments that returns true if and only if
the arguments are equal; we write it in the usual infix notation.

Type system. Jahob uses simply typed lambda calculus [26]. As a matter of convenience,
Jahob allows omitting types for bound variables and infers them using Hindley-Milner type
inference [208, Chapter 9], taking into account any explicitly supplied types for subformulas.
The developer can in principle use parametric polymorphism in HOL formulas, but Jahob
expects that, after applying simple transformations such as definition substitution and beta-
reduction, all identifier occurrences can be inferred to have ground types. When a formula
with a subformula of the form f :: t type checks for t a ground type, then the meaning of
formula f is an element of the set representing the meaning of the type t. The choice of
primitive types in Jahob reflects the intended use of formulas in verification:

• bool represents truth values and is standard in lambda calculi used to represent logics.
(Like the HOL system [110] and unlike the Isabelle framework, we do not distinguish
in our formulas generic meta-logic and the object logic but directly use the object
logic.)

• int represents mathematical integers. Integers model bounded integers in a Java pro-
gram, express cardinalities of sets, index arrays, and represent keys in finite maps.

• obj represents objects in the heap. Such objects are uninterpreted elements in the
logic (admitting only mathematical equality), because their content is given by the
values of their fields, which are represented as functions from objects to other values.
We assume that the set of objects is finite, but do not specify its size. We found this
approach to be sufficient for reasoning about safety properties of programs.

• t set denotes sets of elements of type t; it is isomorphic to t⇒ bool, but we introduce
it in the spirit of common notational practice that is also reflected in Isabelle/HOL.

• t1 ∗ t2 denotes the type whose interpretation is the Cartesian product of the interpre-
tations Jt1K and Jt2K.

Standard semantics. Figure 4-2 presents the standard set theoretic semantics of HOL,
which interprets a function type t1 ⇒ t2 as the set of all total functions from Jt1K to Jt2K.

45

www.manaraa.com

constant
(ASCII)

type semantics notation

¬ (∼) bool⇒ bool negation prefix
∧,∨,→

(&, |, -->)
bool⇒ bool⇒ bool and, or, implication infix

∀ (ALL) (’α⇒ bool)⇒ bool J∀Kh = ∀v. hv ∀x. f denotes ∀ (λx. f)

∃ (EX) (’α⇒ bool)⇒ bool J∃Kh = ∃v. hv ∃x. f denotes ∃ (λx. f)
Collect (’α⇒ bool)⇒ ’α set Collecth = {v | h v} {x. f} denotes Collect (λx. f)
∈ (:) ’α⇒ ’α set⇒ bool set membership
∪ (Un) ’α set⇒ ’α set⇒ ’α set union
∩ (Int) ’α set⇒ ’α set⇒ ’α set intersection
\

(\<setminus>)
’α set⇒ ’α set⇒ ’α set set difference

⊆
(\<subseteq>)

’α set⇒ ’α set⇒ bool subset

Univ ’α set all objects of type ’α
Pair ’α⇒ ’β ⇒ ’α ∗ ’β Pair x y = (x, y) (x, y) denotes Pairx y
fst ’α ∗ ’β ⇒ ’α fst (x, y) = x
snd ’α ∗ ’β ⇒ ’β snd (x, y) = y

rtranclp (’α⇒ ’α⇒ bool)⇒
’α⇒ ’α⇒ bool

transitive closure
rtranclp p z0 y = (z0 = y) ∨

(∃z1, . . . , zn. zn = y ∧
∧n−1

i=0 (p zizi+1))

(a, b) ∈ {(x, y).f}∗

denotes
rtranclp(λxy.f) a b

update (’α⇒ ’β)⇒ ’α⇒ ’β
⇒ ’α⇒ ’β

f(x := v)x = v
f(x := v)y = fy, for y 6= x

f(x := v)
denotes update f x v

<, ≤ (<=) int⇒ int⇒ bool ordering x > y denotes y < x
+,− int⇒ int⇒ int plus,minus
∗ int⇒ int⇒ int multiplication

div,mod int⇒ int⇒ int division, modulo
cardinality obj set⇒ int cardinality of a set
comment ’α⇒ bool⇒ bool comment “text” f = f

Figure 4-3: Logical constants and shorthands

As usual in model theory, our set-theoretic meta notation is no simpler than the language
whose semantics we are giving, but hopefully helps clarify the meaning of the notation. In
the meta notation, I represent functions as functional relations, that is, as particular sets
of pairs. I give the usual set-theoretic semantics to set types t set and product types t1 ∗ t2.
These types could be encoded using function types, but I instead give direct semantics in
the set-theoretic meta-notation, which should be equivalent and simpler.

Logical constants and shorthands. Figure 4-3 shows some of the logical constants and
shorthands that we use in HOL. I do not aim to define all logical constants in terms of
primitives (for such development, see [11, Chapters 4, 5] and the theory files of the Isabelle
distribution). Instead, I just clarify the meaning of Jahob’s HOL notation and give the
model theoretic semantics to the less common symbols.

Following the notation in [201], constants typically have several representations. For
example, the universal quantifier has an ASCII notation ALL, but also the mathematical
notation ∀. Users can enter symbols such as ∀ using the x-symbol package for XEmacs

46

www.manaraa.com

[256] and the Proof General environment [17], which, for example, displays special ASCII
sequence \<forall> as the symbol ∀. These packages were developed for Isabelle, but are
available to Jahob because it uses the same formula syntax and the same convention on
writing formulas in quotes as Isabelle. This illustrates one benefit of adopting an existing
notation.

HOL uses logical connectives of classical logic ¬,∧,∨,→ and quantifiers ∀,∃. The equal-
ity on bool type serves as the logical equivalence.

The set comprehension symbol Collect maps a predicate into a set of objects satisfy-
ing this predicate; notation {x.Px} gives a convenient notation for set comprehensions.
Conversely, the membership operation ∈ allows defining a predicate λx.x ∈ S for any set
S. Symbols ∩,∪, \ represent standard set theoretic operations of union, intersection, and
set difference. The ⊆ symbol represents set inclusion, and Univ represents the universal set
whose type is inferred from the context. As a shorthand, we write Objects to denote formula
Univ :: obj set whose meaning is the set of all object individuals. The (x, y) notation denotes
the pair of values x and y, whereas fst and snd denote projection functions for selecting the
first and the second element of a pair.

The rtranclp symbol denotes reflexive transitive closure of a binary predicate and is a
variation of the Isabelle’s rtrancl operator of type (’α ∗ ’α) set ⇒ (’α ∗ ’α) set. Formula
rtranclp(λxy.f) a b and its set-theoretic syntactic version (a, b) ∈ {(x, y).f}∗ are natural
higher-order representations of the construct (TCxyf)(a, b) used in transitive closure log-
ics [127, Section 9.2].

The function update operator f(x := v) maps a given function f into a new function that
differs from f at a single point x. This operator often occurs in mathematical definitions;
in verification conditions it represents field and array assignments.

We use standard operations and relations on the set of integers. The cardinality oper-
ator represents the cardinality of a finite set of objects. It differs from Isabelle’s built-in
card operator in being monomorphic and and in returning an integer as opposed to a nat-
ural number. We use it to represent constraints of Chapter 7.1. Moreover, in combina-
tion with set comprehensions it naturally represents counting quantifiers [205]; for example
cardinality {x.F} = 1 means that there exists exactly one object x satisfying the formula F .

In addition, Jahob’s HOL allows a notation for comments in formulas using the oper-
ator comment “text” f , whose meaning is the same as the formula f , but which stores the
annotation text within the formula. Jahob maintains these annotations when processing
formulas and displays them in case a proof obligation fails, helping the user to identify the
source of a failed proof obligation.

4.1.1 Rationale for Using Higher-Order Logic in Jahob

I decided to use HOL in Jahob (both as the surface specification language and as the
language for communication between Jahob components) because HOL is a simple and
expressive language that supports reasoning about sets and relations. The ability to rea-
son about sets and relations is important because these concepts naturally describe data
structure content and enable modular analysis in Jahob, separating the verification of data
structure implementation from the verification of data structure uses. I next discuss some
further aspects of using HOL as the specification language.

How expressive logic do we need? The expressive power of full higher-order logic
is beyond the logics for which we presently know how to do non-interactive automated

47

www.manaraa.com

reasoning. However, if one combines different decidable logics in a logic that has a nat-
urally defined syntax, the result is inevitably a very expressive and undecidable logic. It
is therefore reasonable to adopt a logic without artificial limitations that would hamper
further extensions of the framework. Having adopted an expressive language, the research
goal then shifts from the question of developing a specification language to the algorithmic
question of developing decision procedures for subsets of an expressive language, and devel-
oping combination techniques for different decision procedures. Currently, the combination
of logics described in this dissertation does not require the full generality of HOL; what
suffices is the second-order logic of objects combined with the first-order logic of integers.

Uses of set quantification. The logics in Chapter 6 and Chapter 7 allow set quantifi-
cation. The presence of quantification over sets in HOL allows me to easily embed these
logics into HOL. The explicit presence of sets is also a prerequisite for having the cardinality
operator from Chapter 7.

Uses of lambda expressions. The presence of lambda expressions allows Jahob to spec-
ify definitions of functions that represent specification fields in programs. It also allows
Jahob users to define shorthand constructs that Jahob eliminates by substitution and beta-
reduction. Finally, lambda expressions enable encoding of set comprehensions. In combina-
tion with set algebra operations and abstract set variables, set comprehensions can naturally
express properties that would otherwise require universal quantifiers and element-wise rea-
soning.

Interactive theorem provers as the semantic foundation. When choosing an ex-
pressive logic as a specification mechanism, it is important that the users of the system can
relate to the meaning of the notation and bridge the gap between informal requirements and
specifications. The appropriateness of different notations from this perspective is difficult to
objectively quantify, which is reflected in different communities using specification languages
with different foundations. However, expressive logical notations (just like general-purpose
programming lanuages) are somewhat interchangeable, which is why many areas of main-
stream mathematics do not depend on the particular axiomatization of set theory or the
axiomatization of arithmetic. One practical consideration I took into account is that using
directly a core logical notation without a rich predefined set of mathematical notions would
require users to write more universally quantified axioms to axiomatize complex properties.
In my experience this activity all too often leads to contradictory axioms that can make the
results of verification worthless. When using an approach of interactive theorem provers,
this axiomatization is part of the libraries of mathematical facts and its appropriateness is
experimentally verified by a larger body of formalized mathematical knowledge.

Among the alternative choices for an expressive logic, I chose the classical higher-order
logic as a language close to the language used in mainstream mathematics. My particular
choice was inspired by the higher-order logic used in the Isabelle [200] interactive theorem
prover, a system that is actively maintained and freely distributed in source code form. This
choice made it easier to build the Isabelle interface described in Section 4.2. The choice of
Isabelle’s HOL as opposed to a different variant is not essential. Indeed, Charles Buillaguet
has subsequently built (and successfully used) a Jahob interface to the Coq interactive
theorem prover [33]. The fact that Coq uses a different underlying logical foundation than
Isabelle did cause substantial difficulties in creating the Coq interface in Jahob.

48

www.manaraa.com

4.2 Interface to an Interactive Theorem Prover

This section discusses the benefits of an interface to an interactive theorem prover in a
system whose goal is to automatically prove formulas in an expressive logic. Our experience
comes from the use of such an interface in Jahob and Hob [152] systems. A more detailed
description of our experience with Isabelle in the context of Hob is in [267].

4.2.1 A Simple Interface

Jahob manipulates abstract syntax trees of formulas that correspond to those in Section 4.1.
Jahob also contains a parser and a pretty printer for a subset of HOL formulas. These
components support the concrete syntax of Isabelle formulas. A simple Isabelle interface
therefore consists of pretty printing formulas into a file and invoking Isabelle. Jahob as-
sumes a small Isabelle theory on top of Isabelle/HOL; this theory introduces obj as a new
uninterpreted type and defines several shorthands.

In terms of the user-interface, the question is how to combine the interactive nature of
Isabelle and the batch nature of a data structure verifier that generates proof obligations.
We take the following approach:

1. Jahob first invokes Isabelle in batch mode, by generating an input file with the proof
obligation and the default proof script (with a timeout that can be adjusted by the
user). The default proof script invokes Isabelle’s built in auto tactic. If the proof
attempt succeeds, the formula is valid.

2. If the proof fails, Jahob saves it in an Isabelle file that contains a list of unproved
lemmas. The user can then load the file into Isabelle and interactively prove the
formula.

3. In subsequent invocations, Jahob loads the list of previously proved lemmas for the
current verification task and recognizes formulas as true if they occur in the list.

4.2.2 A Priority Queue Example

One of the examples we have verified using theorem proving in [267] is a priority queue
implemented as a binary heap stored in an array [67, Section 6.5]. Figure 4-4 shows the
insert operation approximately corresponding to one of the operations verified in [267].
The postcondition of insert ensures that the set of (key,value)-pairs increases by the in-
serted element. I use the priority queue example to describe the Isabelle interface, even
though the verification was originally done in the context of Hob, because the interface is
essentially the same in both Hob and Jahob.

4.2.3 Formula Splitting

Our initial experience with the Isabelle interface showed that formulas passed to Isabelle can
be large and consist of many independent subgoals. This would lead to interactive proofs
that prove each of the subgoals in a single, long, unreadable proof script. In response to this,
we implemented formula splitting, presented in in Figure 4-5, which takes a formula and
generates a set of sequents. By a sequent I here mean a formula of the formA1∧. . .∧An → G.
The splitting in Figure 4-5 has several desirable properties:

• the original formula is equivalent to the conjunction of the generated sequents;

49

www.manaraa.com

class Element {

public /*: claimedby PriorityQueue */ int key;

public /*: claimedby PriorityQueue */ Object value;

}

class PriorityQueue {

private static Element[] queue;

public /*: readonly */ static int length;

/*:

public static ghost specvar init :: bool = "False";

public static specvar content :: "(int * obj) set"

vardefs "content ==

{(k,v). EX j. 1 <= j & j <= length &

(EX e. e = queue.[j] &

k = e..Element.key & v = e..Element.value)}";

public static specvar maxlen :: int;

vardefs "maxlen == queue..Array.length - 1";

invariant "init --> 0 <= length &

length <= maxlen &

queue ~= null &

(ALL j. 0 < j & j <= length --> queue.[j] ~= null)";

*/

public static void insert(int key, Object value)

/*: requires "init & length < maxlen"

modifies content, length

ensures "content = old content Un {(key, value)} &

length = old length + 1" */

{

length = length + 1;

int i = length;

while /*: invariant "1 <= i & i <= length &

old content = {(k,v). EX j. 1 <= j & j <= length & j ~= i &

(EX e. e = queue.[j] &

k = e..Element.key & v = e..Element.value)} &

(ALL j. 0 < j & j <= length --> queue.[j] ~= null)"; */

(i > 1 && queue[i/2].key < key) {

queue[i] = queue[i/2];

i = i/2;

}

Element e = new Element();

e.key = key;

e.value = value;

queue[i] = e;

}

}

Figure 4-4: Insertion into Priority Queue

50

www.manaraa.com

A1 ∧ . . . ∧An → G1 ∧G2 A1 ∧ . . . ∧An → G1, A1 ∧ . . . ∧An → G2

A1 ∧ . . . ∧An → (B1 ∧ . . . ∧Bm → G) A1 ∧ . . . ∧An ∧B1 ∧ . . . ∧Bm → G
A1 ∧ . . . ∧An → ∀x.G A1 ∧ . . . ∧An → G[x := xfresh]

Figure 4-5: Formula splitting rules

• each sequent is smaller than the original formula;

• the number of generated sequents is linear in the size of the original formula (therefore,
the maximal increase in total formula size is quadratic);

• even if Isabelle’s auto cannot prove the original formula, it can often prove some of
the generated sequents, simplifying the remaining manual task.

The overall effect of splitting is to isolate and separate non-trivial cases in the proof obli-
gation. As an illustration, when we verified the priority queue insertion procedure [267]
corresponding to Figure 4-4, the result were 11 proof obligations. Isabelle proved 5 of those
automatically, and we proved 6 interactively and stored them in a file as lemmas (the av-
erage proof length was 14 lines). Subsequent verification of the procedure loads the stored
lemmas and succeeds without user interaction.

Note that, although the use of splitting described in this section is useful, the idea of
splitting proved even more useful in the context of combining different reasoning techniques,
because Jahob can use different techniques to prove different sequents. Therefore, splitting
acts as a rudimentary backtracking-free form of propositional solving whose complete ver-
sions appear in lazy approaches for satisfiability checking [94].

4.2.4 Lemma Matching

When a data structure changes, or when the developer wishes to strengthen its invariants
during verification, the resulting proof obligations change. Given the amount of effort
involved in interactive theorem proving, it is desirable to reuse as many of the previously
proved lemmas as possible.

Consider the verification of an abstract data type, such as the priority queue example
in Figure 4-4. In general, to show that a state transformation t preserves an invariant I,
Jahob generates a proof obligation of the form

I1 → wlp(t, I1) (4.1)

where the notation wlp(t0, I0) represents the weakest liberal precondition of a predicate
I0 with respect to a state transformation t0. While the representation invariants stated
in Figure 4-4 are enough to verify the postcondition of the insert operation, they are
not enough to verify the postcondition of the extractMax operation in Figure 4-6. The
extractMax operation requires an additional property saying that distinct indices store
distinct objects. Adding this property as an invariant requires showing again that insert

preserves all class invariants. Effectively, it is necessary to show a proof obligation

I1 ∧ I2 → wlp(t, I1 ∧ I2)

51

www.manaraa.com

/*: invariant "init -->

(ALL i j. 0 < i & i < j & j <= length --> queue.[i] ~= queue.[j])"; */

public static Object extractMax()

/*: requires "init & length > 0"

modifies content, length

ensures "length = old length - 1 &

(EX key. (key,result) : content &

content = old content \<setminus> {(key,result)})";

*/

{

if (isEmpty()) return null; // queue is empty

Object res = queue[1].value;

queue[1] = queue[length];

length = length - 1;

heapify(1); // restore heap property, preserving set of elements

return res;

}

Figure 4-6: Extraction of Maximal Element from a Priority Queue, with an Example of an
Additional Invariant

By conjunctivity of wlp [20], this condition reduces to proving two proof obligations

I1 ∧ I2 → wlp(t, I1) (4.2)

I1 ∧ I2 → wlp(t, I2) (4.3)

The splitting from Section 4.2.3 makes sure that Jahob indeed generates these as separate
proof obligations. Proving the condition (4.3) requires a new proof. However, condition (4.2)
is a consequence of the condition (4.1) and we would like to avoid repeating any interactive
proof for it and instead use the proof for a stronger lemma that was saved in a file.

A system that checks for proved lemmas by simply comparing syntax trees will fail to
reuse a proof of (4.1) for (4.2), because they are distinct formulas. It is instead necessary to
take into account formula semantics. On the other hand, giving (4.1) as a lemma to Isabelle
when proving (4.2) does not guarantee that Isabelle will prove (4.2); in our experience this
approach fails for proof obligations that have a large number of assumptions.

We therefore implemented our own lemma matching procedure that compares syntax
trees while allowing assumptions to be strengthened and conclusions to be weakened. This
technique enabled us to reuse proofs in the case of strengthening invariants, as well as for
several other simple changes to proof obligations, such as changing the order of conjuncts
and disjuncts.

4.2.5 Summary of Benefits

We have found that the main benefits of an interface to an interactive prover are

• the ability prove difficult formulas that cannot be proved using more automated tech-
niques;

• debugging the system itself while developing more automated techniques; and

• feedback from the proof process about the reasons why the formula is valid or invalid.

52

www.manaraa.com

Interactively proving difficult formulas. The formulas that we encounter in data
structure verification appear to have the property that if they are valid, they they have rea-
sonably short proofs. One explanation of this observation is that data structure verification
formalizes informal correctness arguments that programmers use on an everyday basis and
therefore do not require intricate mathematical reasoning. As a result, the valid formulas
that are of interest in data structure verification are in practice provable interactively given
the right proof hints (independently of the well-known incompleteness of axiomatizations
of logical systems [108, 59]). Proving a proof obligation is therefore a matter of investing
enough effort to describe the proof steps in an interactive theorem prover. This approach
is becoming easier with the increase of automation in interactive theorem provers and it is
feasible to use it for important problems [171, 15, 138], but it can still be time consuming.
The advantage of this approach in the context of Jahob is that the user only needs to use
the Isabelle interface to prove certain problematic proof obligations that were not provable
by other methods. In comparison, a user of an automated system that does not have a
fall-back on an interactive theorem prover will sometimes need to substantially weaken the
property of interest that is ultimately proved, or otherwise admit potential “holes in the
proof” that are not justified within the system itself. Of course, Jahob users can still choose
to leave such holes in their verification task using the assume statements. Jahob allows un-
restricted use of assume statements but emits a warning when it encounters them. It is up
to the Jahob user to make the trade off between the verification effort and the correctness
assurance that they need.

Debugging benefits. In addition to proving difficult formulas that are directly relevant
to the verification task, our Isabelle interface was useful during the development of the
verification system itself. Initially we used this interface to make sure that the formulas
that we generate are accepted by Isabelle (both in terms of the syntax and in terms of type
correctness). More importantly, as we implement new techniques for deciding formulas
arising in data structure verification, we sometimes encounter formulas for which the result
of the current implementation does not match our understanding of the system or of the
example being verified. Being able to examine the formula and try to prove it in Isabelle
allows us to discover whether the formula is truly valid or invalid, as well as to find the reason
why this is so. We can then use this insight to eliminate any implementation errors (in the
case of unsoundness), or to improve the precision of the automated technique to make the
formula automatically provable (in case of a formula that was not proved automatically).

Feedback from the proof process. An important aspect of an interactive theorem
prover in both of the previous applications is the feedback obtained from the interactive
theorem proving process. This feedback allows the user or the developer to identify reasons
why the proof fails or succeeds. Because the proving process is under the user’s control, the
user can trace this feedback to the reason why a formula is valid or invalid. For example,
it may be possible to identify the source of contradiction in assumptions, or a missing
assumption in the formula. This form of feedback corresponds to the insights one gains
in manually trying to prove the correctness of a system, and is orthogonal to presenting
feedback by automatically searching for counterexamples in finite scopes [132, 131], which
is in principle available in Jahob through the TPTP interface and the Paradox model finder
[56], but currently without guarantees that the models found are sound counterexamples.
(See [150] for results on soundness of counterexamples over infinite domains.)

53

www.manaraa.com

4.2.6 Discussion

I described several simple yet useful techniques in Jahob’s interface to an interactive theorem
prover. Our experience supports the idea that expressive specification languages have their
place in data structure verification. Moreover, this section argues that interactive theorem
provers that can handle the entire language are a useful component of a verification system.
By verifying partial correctness properties (e.g. by not verifying the sortedness of priority
queue), this section also illustrates that choosing properties carefully can reduce the burden
of interactive theorem proving. In the rest of this dissertation I show how automated
techniques can often eliminate the need for interactive theorem proving. Interactive theorem
proving then remains a fall-back employed only for the most difficult properties.

A natural question to ask is whether these automated techniques should be 1) incor-
porated into a data structure verification system, or 2) incorporated into the interactive
theorem prover as in [188, 31]. I choose the first approach because it gives a lot of flexibility
and avoids the need to understand an existing implementation of an interactive theorem
prover. However, the techniques that I describe may also be appropriate for integration
into an interactive theorem prover.

4.3 Approximation of Higher-Order Logic Formulas

This section describes a general technique for approximating higher-order logic formulas to
obtain formulas in a simpler fragment of logic. The goal is to check the validity of such
simpler formulas with more automation than with interactive theorem proving. The basic
idea is to approximate the validity of formulas with the validity of stronger formulas in a
recursive way, taking into account the monotonicity of logical operations ∧,∨,∃,∀, as well
as the anti-monotonicity of ¬. The basis of this recursion is the approximation of formula
literals by simpler formulas, and depends on the target subset of formulas. The approx-
imation replaces the formula constructs that are entirely outside the scope of the target
fragment by false in a positive context and by true in a negative context, resulting in a
sound approximation scheme that is applicable to arbitrary higher-order logic formulas. To
increase the precision of the approximation on formulas with nested subterms, the trans-
formation can first flatten such formulas, generating multiple simpler literals each of which
can be approximated independently.

4.3.1 Approximation Scheme for HOL Formulas

The process of approximating formulas by simpler ones resembles abstract interpreta-
tion [69]. The approximation should preserve soundness for validity, so it replaces formulas
by stronger ones. The entailment relation defines a preorder on formulas, which is a par-
tial order modulo formula equivalence. Let HOL denote the set of our higher-order logic
formulas and C denote the target class of more tractable formulas. We define two functions

γ : C→ HOL

α0 : HOL→ C

such that
γ(α0(F)) |= F (4.4)

54

www.manaraa.com

α : {0, 1} × F → C

αp(f1 ∧ f2) ≡ αp(f1) ∧ αp(f2)

αp(f1 ∨ f2) ≡ αp(f1) ∨ αp(f2)

αp(¬f) ≡ ¬αp(f)

αp(f1 → f2) ≡ αp(f1)→ αp(f2)

αp(∀x.f) ≡ ∀x.αp(f)

αp(∃x.f) ≡ ∃x.αp(f)

α0(f) ≡ false, if none of the previous cases apply

α1(f) ≡ true, if none of the previous cases apply

Figure 4-7: General Approximation Scheme

We can think of γ as providing the semantics to formulas in C in terms of HOL. The actual
approximation is the function α0, which approximates HOL formulas with simpler ones (for
example, with first-order formulas or with formulas in a decidable logic).

The definition of α0 is specific to the class C of target formulas, but generally proceeds by
recursion on the syntax tree of the formula, using the monotonicity and anti-monotonicity of
logical operations to ensure the condition (4.4). Figure 4-7 sketches a typical way of defining
the approximation function α0. To handle negation, it is convenient to introduce a dual α1

such that F |= γ(α1(F)), for example by having α1(¬F) = α0(F) and α0(¬F) = α1(F).
Figure 4-7 uses notation p with the meaning 0 = 1 and 1 = 0. (An alternative to keeping
track of polarity is to use the negation-normal form of formulas in Figure 4-8.) The transla-
tion α1 is likely to be useful in itself for using model finders [131, 56] to find counterexamples
to formulas because it preserves the presence of certain models [149]. A simple way to define
α0 is to first construct the embedding γ and then construct α0 by inverting γ when possible
and returning a conservative result false otherwise (for a formula in negation-normal form).
To make this simple approach more robust, we first apply rewrite rules that transform for-
mulas into a form where the translation is more effective. Section 4.3.2 presents rewrite
rules that we found useful. Chapter 5 presents a series of specific rewrite rules that facilitate
transformation into first-order logic.

In Figure 4-7, the translation of a quantification Qx :: t over a variable x of type t
applies to the case where the target class C also supports quantification over the elements
of the type t. If the class C does not permit quantification over x, the approximation can
attempt to skolemize x or eliminate x using substitution. If everything fails, the transla-
tion approximates the quantified formula with false or true according to the polarity. A
potentially more precise approach is to approximate those atomic formulas in the scope of
the quantifier that contain x with an expression not containing x, eliminating the need to
quantify over x.

Note that the approximation α0 can expect the argument to contain a specific top-level
assumption, such as the treeness of the structure along certain fields, and return a trivial
result if this is not the case. Chapter 6 presents an example of such approximation.

In general, it is useful to apply multiple approximations α0
1, . . . , α

0
n to the same formula.

If any of the approximations results in a valid formula, the original formula is valid. The
splitting in Section 4.2.3 helps this process succeed by allowing Jahob to prove each sequent

55

www.manaraa.com

proc NegationNormalForm(G : formula with connectives ∧,∨,¬):
apply the following rewrite rules:

¬(∀x.G) → ∃x.¬G
¬(∃x.G) → ∀x.¬G
¬¬G → G

¬(G1 ∧G2) → (¬G1) ∨ (¬G2)
¬(G1 ∨G2) → (¬G1) ∧ (¬G2)

Figure 4-8: Negation Normal Form

using a different approximation (see Section 4.4 for further discussion).

4.3.2 Preprocessing Transformations of HOL Formulas

We next describe several transformations of HOL formulas that we found generally use-
ful to perform before applying formula approximations. Note that these transformations
are typically validity-preserving and are not strict approximations in the sense of losing
information. However, they often improve the precision of subsequent approximations. I
describe the approximations themselves in subsequent chapters because they are specific
to the target class of formulas, see Section 5.2, Section 6.3, and Section 7.6. Just like for-
mula approximations, some preprocessing transformations are specific to the target class of
formulas and I describe them in the corresponding chapters (most notably, Section 5.2 con-
tains additional equivalence-preserving transformations that are useful for first-order logic
approximation).

Definition substitution and beta reduction. When a Jahob program contains a spec-
ification variable with the definition v==\<lambda> x. e, the resulting proof obligation
will often contain assumptions of the form v’==\<lambda> x. e’ where e’ is a result of
applying some substitutions to e. Jahob typically eliminates such assumptions by substi-
tuting the variables with the the right-hand side of the equality and then performing beta
reduction, as in standard lambda calculus.

Negation normal form. To avoid any ambiguity, Figure 4-8 presents rules for trans-
forming a formula into negation-normal form. In negation-normal form, all negations apply
to literals as opposed to more general formulas. The transformation in Figure 4-8 assumes
that implication and equivalence are eliminated from the formula, which can be done in a
standard way, by replacing the equivalence p↔ q (written p = q for p and q of type bool)
with p→ q ∧ q → p and by replacing p→ q with p ∨ ¬q.

Flattening. A useful transformation during formula approximation is flattening of formu-
las with nested terms, which replaces complex atomic formulas such as P (f x) by multiple
atomic formulas such as y = f x and P y where y is a fresh variable. The translation can
choose whether to quantify y existentially, generating ∃y. y = f x ∧ P y or universally,
generating ∀y. y = f x→ P y. Flattening has several benefits:

• Flattening avoids an exponential explosion in rewrite rules that duplicate subterms.
Such rewrite rules arise in the translation of conditional expressions and function
updates.

• Flattening enables the representation of function applications by predicates or by
binary relations that approximate them, as in Chapter 6.

56

www.manaraa.com

preprocess : HOL→ HOL (preprocessing transformations)
[(α1, d1), . . . , (αm, dm)] (list of prover instances)
αj : HOL→ Cj (approximation function)
dj : Ci → bool (prover for Cj formulas)

proc validFormula(F : HOL) : bool =
let [F1, . . . , Fn] = splitIntoSequents(F) (see Figure 4-5)
for i = 1 to n do (prove conjunction of all Fi)
if not validSequent(Fi) then return false

endfor
return true (all sequents proved)

proc validSequent(Fi : HOL) : bool =
let F ′

i = preprocess(Fi)
for j = 1 to m do (try disjunction of all provers)
let F ′′

i = αj(F ′
i) (approximate formula)

if dj(F ′′
i) then return true (prover j proved sequent Fi)

endfor
return false (all provers failed)

Figure 4-9: Jahob’s algorithm for combining reasoning procedures (provers)

• Flattening localizes the effect of conservative approximations. For example, when
translating a predicate P (f(x)) where f is a construct not supported in C (or a
construct containing a quantified variable that ranges over an unsupported domain), it
is more precise to flatten it into the formula ∀y. y = f x → P y and then approximate
y = f x to true, yielding ∀y. P y, than to replace the entire formula P (f x) by false.

4.4 Summary and Discussion of the Combination Technique

In this section I summarize Jahob’s algorithm for proving the validity of HOL formulas by
combining multiple decision procedures and theorem provers. I discuss properties of this
algorithm, showing how the structure of verification conditions, as well as user-supplied
lemmas and specification variables increase its effectiveness.

4.4.1 Jahob’s Combination Algorithm

Figure 4-9 shows a high-level description of Jahob’s algorithm for proving HOL formulas.
In addition to the preprocessing function, the parameter of the algorithm is a sequence of
prover instances. A prover instance is a pair of approximation function, which maps HOL
formulas into simpler formulas, and a function that accepts a simpler formula and attempts
to prove that it is valid. In actual Jahob implementation, a Jahob user specifies the list of
prover instances on a command line by instantiating the available translations and inter-
faces to decision procedures and theorem provers. The instantiation consists in specifying
parameters such as time outs and the precision of the approximation (see Section 5.5 for
specific examples of parameters). The algorithm is given by function validFormula, which
first invokes splitting (Figure 4-5) to generate a list of sequents, and then attempts to prove
each sequent in turn using the validSequent function. The validSequent function first applies
formula preprocessing and then attempts to prove the sequent using each prover instance

57

www.manaraa.com

until one of the attempts succeeds or they all fail. An attempt number j consists in first
approximating the preprocessed sequent using αj to obtain a formula in the simpler class
Cj, and then attempting to prove the resulting simpler formula using the given function
dj . The execution of dj may involve invoking an external theorem prover or a decision
procedure.

At the time of writing, Jahob has the following provers (see also Figure 3-5):

• a simple and fast built-in prover;

• MONA [143] decision procedure for monadic second-order logic, with field constraint
analysis (Chapter 6);

• CVC Lite [30] decision procedure for a combination of decidable theories (using the
SMT-LIB interface [216]);

• SPASS [248] resolution-based prover;

• E [228] and Vampire [244] resolution based provers (using the TPTP interface);

• Boolean Algebra with Presburger arithmetic solver (Chapter 7), with CVC Lite (and,
in the past, Omega) as the Presburger arithmetic back-end;

• Isabelle [200] interactive prover;

• Coq [33] interactive prover.

We have found instances where we needed to combine several provers to prove a formula,
using for example, MONA along with a first-order prover or CVC Lite, or using E, SPASS,
and Isabelle together to prove all of the generated sequents.

Jahob always invokes its built-in prover before any others. The built-in prover is very
useful, despite its simplicity. In addition to establishing many sequents that can be shown
syntactically and that arise from, for example, null pointer checks, it also has the property
of successfully proving formulas such as F → F for arbitrarily complex F . Such trivial
tautology instances arise when proving preservation of complex conditions or when giving
names to assumptions using noteThat statements, but are often obscured by skolemization
and the translation, preventing the remaining sophisticated tools to establish them in a
reasonable amount of time.

4.4.2 Verifying Independent Invariants

I next illustrate that Jahob’s combination algorithm effectively deals with verifying multiple
independent invariants that can be translated to languages of different provers.

Using the notation of Figure 4-9, consider two provers (α1, d1) and (α2, d2) for two
specialized logics C1,C2 ⊆ HOL with αi(F) = F for F ∈ Ci for i = 1, 2. Consider the
verification of a class with three invariants I1, I2, and I12, where I1 ∈ C1, I2 ∈ C2 and
I12 ∈ C1 ∩ C2. The preservation of these three invariants under a sequence of commands c
is given by the condition

assume I1 ∧ I12 ∧ I2;
c;
assert I1 ∧ I12 ∧ I2;

Taking into account that wlp distributes over conjunctions, a verification condition F for
the preservation of invariants is then of the form:

I1 ∧ I12 ∧ I2 → (wlp(I1) ∧ wlp(I12) ∧ wlp(I2))

58

www.manaraa.com

Splitting invoked in Figure 4-9 will split this verification condition into at least three con-
juncts because the right-hand side of the implication has at least three conjuncts. Suppose
that splitIntoSequents(F) = [F1, F12, F2] where

F1 = I1 ∧ I12 ∧ I2 → wlp(I1)
F12 = I1 ∧ I12 ∧ I2 → wlp(I12)
F2 = I1 ∧ I12 ∧ I2 → wlp(I2)

Suppose further that the classes of formulas C1, C2, C1 ∩C2 are closed under wlp. We can
then reasonably expect the following results of approximation:

α1(F1) = I1 ∧ I12 ∧ true→ wlp(I1) = I1 ∧ I12 → wlp(I1)
α2(F2) = true ∧ I12 ∧ I2 → wlp(I2) = I12 ∧ I2 → wlp(I2)
α1(F12) = I1 ∧ I12 ∧ true→ wlp(I12) = I1 ∧ I12 → wlp(I12)
α2(F12) = true ∧ I12 ∧ I2 → wlp(I12) = I12 ∧ I2 → wlp(I12)

Note that the approximations αi in this case essentially act as filters for assumptions that
are outside the scope of the prover. For example, α1(I2) = true because I2 /∈ C1.

We observe that, if the preservation of invariants is independent, the prover p1 will suc-
cesfully prove the preservation of I1 and the prover p2 will succesfully prove the preservation
of I2. The preservation of I12 will be proved by whichever prover is ran first. This example
shows that Jahob’s combination technique is precise enough to support the use of multiple
specialized analyses, generalizing the basic approach of Hob [152], suggesting that if an
independent analysis with an annotation language C1 would succeed to prove I1 and an in-
dependent analysis with annotation language I2 would succeed in analyzing the procedure,
then Jahob’s approach would succeed in showing that both I1 and I2 are preserved. The
invariant I12 illustrates the usefulness of a common specification language: if two invariants
have any conjuncts in common, they can be factored out into I12 and specified only once.
In contrast, a user of analysis that require multiple specification formalisms would need to
state the common fact I12 twice to make it understood by each of the analyses.

4.4.3 Using Annotations to Aid the Combination Algorithm

We have seen that the structure of verification conditions makes Jahob’s simple combination
algorithm useful for proving the preservation of independent properties. I next illustrate
that user annotations can further increase the effectiveness of the combination algorithm.

Providing Lemmas using noteThat Statements

I first show how introducing noteThat statements corresponds to introducing lemmas while
proving a verification condition. Consider a procedure whose body is a deterministic com-
mand b and whose verification condition is p→ wlp(c, q) where p is precondition and q post-
condition. Then inserting a statement noteThatf as the last statement of the procedure
results in a different verification condition, of the form p→ wlp(c, f ∧ (f → q)). For a deter-
ministic command c, this verification condition is identical to p→ (wlp(c, f)∧ (wlp(c, f)→
wlp(c, q))). Our splitting from Section 4.2.3 therefore transforms such verification condition
into two sequents:

p→ wlp(c, f)
p ∧ wlp(c, f)→ wlp(c, q)

59

www.manaraa.com

Therefore, a noteThatf statement results in introducing a lemma wlp(c, f) in proving
wlp(c, q) from p. We have found that supplying such lemmas during verification is a natural
way of guiding a complex verification task.

Case Analysis Using Lemmas

In particular, users can introduce lemmas that direct Jahob to do case analysis. Consider
a code fragment

assume F ;
assert G;

Here F is a complex formula with many conjuncts and assume F represents the effect of
analyzing a complex sequence of statements and annotations. To verifying the above piece
of code, Jahob would generate a proof obligation of the form F → G. Suppose that such
formula is difficult to prove directly, but becomes eaiser by doing case analysis with two
cases C1 and C2. The following set of annotations will then Jahob establish the goal.

assume F ;
noteThat firstLemma: (C1 → G);
noteThat secondLemma: (C2 → G);
assert G from firstLemma, secondLemma;

The first noteThat statements establishes the first case, the second noteThat statement
establishes the second case, and the final assert statement proves the conclusion using the
two cases.

4.4.4 Lemmas about Sets

We next consider lemmas that belong to the class of formulas that we denote QFBA, and
which contains Quantifier-Free Boolean Algebra expressions denoting relationships between
sets of objects. QFBA can express relationships between sets that denote contents of data
structures and parts of data structures, including the individual objects. Lemmas in QFBA

language are interesting because QFBA can be precisely translated to the language of the
most effective provers that Jahob relies on: 1) it can be translated to first-order logic
(Chapter 5) by representing sets as unary predicates and set operations using universal
quantifiers; 2) it can be translated to monadic second-order logic of trees (Chapter 6)
because this logic directly supports arbitrary operations on sets; and 3) it is a fragment of
Boolean Algebra with Presburger Arithmetic (Chapter 7). As a result, QFBA lemmas can
be used to exchange information between all these reasoning procedures.

Users can introduce specification variables to help state QFBA lemmas. Consider an
implementation of a linked list whose first node is referenced by a global variable root,
whose nodes are liked using the next field and whose data elements are stored in the data

field. Consider the task of verifying that a code fragment c

List n1 = new List();

Object d1 = new Object();

n1.next = root;

n1.data = d1;

root = n1;

size = size + 1;

60

www.manaraa.com

that inserts a fresh object into a linked list preserves an invariant I given by

size = cardinality{x. ∃n. x = datan ∧ (root, n) ∈ {(u, v).next u = v}∗ ∧ n 6= null} (4.5)

which states that an integer field size is equal to the number of distinct elements stored in
the list. We can represent this verification task using the sequence assume I; c; assert I,
resulting in a verification condition of the form B ∧ I → wlp(I, c) where B is a formula de-
scribing some additional properties of program state such as the fact that the data structure
is an acyclic singly linked list with root variable pointing to its first element. This verifi-
cation condition is not expressible in first-order logic because of the presence of transitive
closure operator ∗, it is not expressible in monadic second-order logic over trees because the
list may store duplicates (so it may be the case that datan1 = datan2 for n1 6= n2), and it is
not expressible in Boolean Algebra with Presburger Arithmetic because it contains relation
symbols such as data and next. Suppose, however, that the user introduces two set-valued
specification variables nodes and content of type obj set, containing the set of linked nodes
of the list and the set of the stored elements of the list. The invariant (4.5) then reduces to
size = cardinality content. The following additional invariants define the new set variables

nodesDef : nodes = {n. (root, n) ∈ {(u, v).next u = v}∗ ∧ n 6= null}
contentDef : content = {x. ∃n. x = datan ∧ n ∈ nodes}

The user can then specify changes to nodes and content as well as a lemma about the
freshness of d1, obtaining the following sequence of statements.

c;
noteThat d1 /∈ content;
nodes := {n1} ∪ nodes;
content := {d1} ∪ content;

The assignments to specification variables essentially express lemmas nodes = {n1} ∪
old nodes and content = {d1}∪old content describing how the sets change in response to the
changes to the data structure, and they can be seen as introducing variables for subformulas
of the original verification condition. After the application of splitting, the result are proof
obligations of the following form:

(B ∧ . . .)→ wlp(c, d1 /∈ content)
(B ∧ nodesDef ∧ . . .)→ wlp(c, nodesDef)
(B ∧ contentDef ∧ . . .)→ wlp(c, contentDef)
(B ∧ size = cardinality content)→ wlp(c, size = cardinality content)

The first proof obligation is easy and is proved using a first-order prover, the second is
proved using MONA decision procedure, the third one again using a first-order prover, and
the final one using BAPA decision procedure.

4.4.5 Comparison to Nelson-Oppen Combination Technique

I next illustrate how our approximation technique along with user-directed case analysis and
flattening proves formulas that can be proved by Nelson-Oppen style [197, 195] combination
of decision procedures.

Assume that we have available a decision procedure for Presburger arithmetic, with an

61

www.manaraa.com

approximation function αPA that takes a formula and generates a stronger formula in Pres-
burger arithmetic. Assume similarly that we have a decision procedure for uninterpreted
function symbols, whose approximation function is αUF. These two languages share only
the equality symbol, which means that it suffices to communicate between them equalities
and inequalities between the shared variables [237].

Consider the process of proving the validity of the formula F given by

a < b+ 1 ∧ b < a+ 1 ∧ a1 = f(a) ∧ b1 = f(b) → a1 = b1

If we directly approximate formulas we obtain

αPA(F) = a < b+ 1 ∧ b < a+ 1 → a1 = b1
αUF(F) = a1 = f(a) ∧ b1 = f(b) → a1 = b1

None of the formulas αPA(F) or αUF(F) are valid, so the combination would fail to prove
F . If, on the other hand, the user uses a noteThat statement to introduce case analysis on
the formula G given by a = b, we obtain a conjunction of formulas F1 and F2:

F1 ≡ a < b+ 1 ∧ b < a+ 1 ∧ a1 = f(a) ∧ b1 = f(b) ∧ a = b→ a1 = b1
F2 ≡ a < b+ 1 ∧ b < a+ 1 ∧ a1 = f(a) ∧ b1 = f(b) ∧ a 6= b→ a1 = b1

When we perform approximation, we obtain the results given by the following table

F1 F2

αPA invalid valid

αUF valid invalid

Namely, note that

αPA(F1) ≡ a < b+ 1 ∧ b < a+ 1 ∧ a = b→ a1 = b1
αUF(F2) ≡ a1 = f(a) ∧ b1 = f(b) ∧ a 6= b→ a1 = b1

Therefore, each conjunct is proved by one decision procedure.
Assume that αPA and αUF distribute through conjunction (αPA(H1 ∧H2) = αPA(H1)∧

αPA(H2) and similarly for αUF) and, because C is known to both decision procedures, that
αPA(C) = αUF(C) = C. Let [H] denote the validity of a formula H. We have then replaced
the approximation

[αPA(F)] ∨ [αUF(F)]

of the statement [F] with a stronger approximation

([αPA(F) ∨ C] ∨ [αUF(F) ∨ C]) ∧
([αPA(F) ∨ ¬C] ∨ [αUF(F) ∨ ¬C])

Generalizing from this example, observe that the case analysis triggered by user lemmas
and splitting forces exploration of the arrangements needed to prove a valid formula in
Nelson-Oppen combination. So, if a Nelson-Oppen combination can prove a formula, there
exist noteThat statements that enable Jahob’s combination technique to prove this formula
as well.

Trade-offs in combining expressive logics. By comparing Jahob’s combination method
with Nelson-Oppen combination technique, we conclude that Jahob’s method is simpler

62

www.manaraa.com

and does not attempt to guess the arrangement for shared symbols of formulas. Instead,
it relies on the structure of the underlying formulas and on user annotations to provide
the arrangements. Note however, that Jahob’s technique addresses the combination of
rich logics that (as Section 4.4.4 explains) share set algebra expressions as opposed to
sharing only equalities (as the traditional Nelson-Oppen decision procedures). A complete
decision procedure in the presence of shared set algebra expressions would need to non-
deterministically guess an exponentially large set of relationships between sets of objects
(see, for example, [266]), leading to a doubly exponential process. Therefore, it is likely
that the automation of the process of guessing shared formulas should take into account the
nature of formulas considered. Thomas Wies implemented one such approach in Jahob’s
Bohne module [254, 251], but its description is outside of the scope of this dissertation. In
summary, Jahob’s approach I describe is simple, sound, and generally applicable, but does
not attempt to achieve completeness in an automated way.

4.5 Related Work

I survey some of the related work in the area of mechanized expressive logics and in the
area of combination techniques.

Mechanized expressive logics. Jahob’s notation is based on Isabelle/HOL [200, 207]. I
decided to use Isabelle/HOL because I consider its notation to be a natural formalization of
mainstream mathematics and find the tool to be open and easily accessible. Other similar
systems might have worked just as well, especially given the fact that Jahob’s automation
does not rely on Isabelle implementation internals. Other popular interactive theorem
provers based on classical higher-order logic are the HOL system [110], TPS [10], and PVS
[204] (which containing extensions of the type system with dependent types and subtypes).
For a comparison between HOL and PVS see [111]. Also popular are systems that use
constructive mathematics as the starting point: the Coq system [33] based on the calculus
of constructions [65], and NuPRL [62]. Jahob also has an interface to Coq, using Coq
libraries that enable the axioms of classical logic and set theory. In contrast to these systems
based on higher-order logic, Athena [15] is based on simple multisorted first-order logic.
Athena offers a complete tactic language smoothly integrated with the formula language,
and guarantees soundness using the notion of assumption bases [12] instead of using sequent
proofs. Mizar [222] is a system for writing and checking proofs. Mizar is best known for the
Mizar Mathematical Library, a substantial body of formally checked human-readable proofs
of theorems in basic mathematics. The ACL2 system [139, 138] is known for a powerful
simplifier and automated reasoning by induction. Numerous ACL2 case studies demonstrate
that it is often possible to avoid using quantifiers and rich set-theoretic notations when
reasoning about computer systems and obtain specifications that can be both executed
efficiently and automated using rewriting techniques. The Ωmega system [231] was designed
to experiment with the use of proof planing techniques in reasoning about higher-order logic.
The Alloy modelling language [131] is based on first-order logic with transitive closure
expressed using relational operators. Alloy has a module mechanism and its own type
system [85]. The associated finite model finder [242] based on a translation to SAT has
proved extremely successful in finding finite counterexamples for a range of specifications.
A Jahob interface to Alloy would be very useful for debugging Jahob specifications and
implementations. Other tools have been built specifically to support verification of software;
I discuss them in Section 3.4.

63

www.manaraa.com

Combination techniques. Among the most successful combination methods for de-
cision procedures is the Nelson-Oppen technique [197], which forms the basis of success-
ful implementations such as Simplify [82] and more recently CVC Lite [30] and Veri-
fun [93]. The original Nelson-Oppen technique requires disjoint signatures and stably
infinite theories [238]. Generalizations that weaken these requirements are described in
[263, 104, 239, 105, 237]. Rewriting techniques are promising for deriving and combining
decision procedures [142, 16, 241]. These results generally work with decidable classes of
quantifier-free formulas with some background theory axioms. Among the results on com-
bining quantified formulas are techniques based on quantifier elimination, such as Feferman-
Vaught theorem for products of structures [90], term powers for term-like generalizations of
finite powers [156], and decidability results generalizing the decidability of monadic second-
order logic over binary strings to strings over elements of a structure with a decidable
monadic theory [245].

In the context of interactive theorem provers, it is natural to consider combinations
of automated techniques to increase the granularity of interactive proof steps. Such inte-
gration is heavily used in PVS [204]. Shankar observes in [230] that higher-order logics
are consistent with the idea of automation if they are viewed as unifying logics for more
tractable fragments. My approach is very much in the spirit of these observations, but uses
a different technique for combining reasoning procedures. My motivation for this technique
is data structure verification, but I expect that some of my results will be of use in in-
teractive theorem provers as well. Integration with specialized reasoning was also present
in the Boyer-Moore provers [41] and the HOL systems [126, 125, 184]. Isabelle has been
integrated with monadic second-order logic over strings [31] but without field constraint
analysis of Chapter 6, and with first-order provers [188, 187, 186] using a less specialized
translation than the one in Chapter 5. Athena system has also been integrated with first-
order provers and model finders [15, 14, 13]. Among software architectures and standards
designed to support combinations of reasoning tools are the PROSPER toolkit [81], and
MathWeb [102].

4.6 Conclusion

In this chapter I presented Jahob’s higher-order logic based on Isabelle/HOL and described
an interface to the Isabelle interactive theorem prover. I argued that classical higher-order
logic is a natural notation for data structure properties. I outlined the idea of using split-
ting and approximation to combine different reasoning procedures for deciding interesting
fragments of this logic. The combination technique I propose is simple yet useful for inde-
pendently stated properties. The users can increase the effectiveness of the technique by
separating properties using intermediate lemmas and specification variables. In subsequent
chapters I illustrate that the automation of fragments of this logic is feasible and enables
the verification of relevant data structure properties.

64

www.manaraa.com

Chapter 5

First-Order Logic for Data

Structure Implementation and Use

One of the main challenges in the verification of software systems is the analysis of un-
bounded data structures with dynamically allocated linked data structures and arrays.
Examples of such data structures are linked lists, trees, and hash tables. The goal of
these data structures is to efficiently implement sets and relations, with operations such as
lookup, insert, and removal. This chapter explores the verification of programs with such
data structures using resolution-based theorem provers for first-order logic with equality.
The material in this chapter is based on [38]. The main result of this chapter is a partic-
ular translation from HOL to first-order logic. In addition to being useful for leveraging
resolution-based theorem provers, this translation is useful for leveraging Nelson-Oppen
style theorem provers with instantiation heuristics, whose one example is CVC Lite [30].
However, current Nelson-Oppen style implementations typically accept a sorted first-order
language [216], so the question of omitting sorts in Section 5.3 does not arise.

Initial goal and the effectiveness of the approach. The initial motivation for using
first-order provers is the observation that quantifier-free constraints on sets and relations
that represent data structures can be translated to first-order logic or even its fragments
[160]. This approach is suitable for verifying clients of data structures, because such verifica-
tion need not deal with transitive closure present in the implementation of data structures.
My initial goal was to incorporate first-order theorem provers into Jahob to verify data
structure clients. While we have indeed successfully verified some data structure clients
(such as the library example), we also discovered that this approach has a wider range of
applicability than we had initially anticipated.

• We were able to apply this technique not only to data structure clients, but also
to data structure implementations, using recursion and ghost variables and, in some
cases, confining data structure mutation to newly allocated objects only.

• We found that there is no need in practice to restrict first-order properties to decidable
fragments of first-order logic as suggested in [160], because many formulas that are
not easily categorized into known decidable fragments have short proofs, and theorem
provers can find these proofs effectively.

• Theorem provers were effective at dealing with quantified invariants that often arise
when reasoning about unbounded numbers of objects.

65

www.manaraa.com

• Using a simple partial axiomatization of linear arithmetic, we were able to verify
ordering properties in a binary search tree, hash table invariants, and bounds for all
array accesses.

The context of our results. I find our current results encouraging and attribute them
to several factors. The use of ghost variables eliminated the need for transitive closure
in our specifications, similarly to the use of more specialized forms of ghost variables in
[185, 151]. Our use of recursion in combination with Jahob’s approach to handling pro-
cedure calls resulted in more tractable verification conditions, suggesting that functional
programming techniques are useful for reasoning about programs even in imperative pro-
graming languages. The semantics of procedure calls that we used in our examples is based
on complete hiding of modifications to encapsulated objects. This semantics avoids the pes-
simistic assumption that every object is modified unless semantically proven otherwise, but
currently prevents external references to encapsulated objects using simple syntactic checks.
Finally, for those of our procedures that were written using loops instead of recursion, we
manually supplied loop invariants.

Key ideas. The complexity of the properties we are checking made verification non-trivial
even under the previously stated simplifying circumstances, and we found it necessary to
introduce the following techniques for proving the generated verification conditions.

1. We introduce a translation to first-order logic with equality that avoids the poten-
tial inefficiencies of a general encoding of higher-order logic into first-order logic by
handling the common cases and soundly approximating the remaining cases.

2. We use a translation to first-order logic that ignores information about sorts that
would distinguish integers from objects. The results are smaller proof obligations
and substantially better performance of provers. Moreover, we prove a somewhat
surprising result: omitting such sort information is always sound and complete for
disjoint sorts of the same cardinality. This avoids the need to separately check the
generated proofs for soundness. Omitting sorts was essential for obtaining our results.
Without it, difficult proof obligations are impossible to prove or take a substantially
larger amount of time.

3. We use heuristics for filtering assumptions from first-order formulas that reduce the in-
put problem size, speed up the theorem proving process, and improve the automation
of the verification process.

The first two techniques are the main contribution of this chapter; the use of the third
technique confirms previous observations about usefulness of assumption filtering in auto-
matically generated first-order formulas [186].

Verified data structures and properties. Together, these techniques enabled us to ver-
ify, for example, that binary search trees and hash tables correctly implement their relational
interfaces, including an accurate specification of removal operations. Such postconditions of
operations in turn required verifying representation invariants: in binary search tree, they
require proving sortedness of the tree; in hash table, they require proving that keys belong
to the buckets given by their hash code. To summarize, our technique verifies that

1. representation invariants hold in the initial state;

66

www.manaraa.com

2. each data structure operation

• establishes the postcondition specifying the change of a user-specified abstract
variable such as a set or relation (for example, an operation that updates a key
is given by postcondition

content = (old content \ {(x, y) | x = key}) ∪ {(key, value)}

• does not modify unintended parts of the state, for example, a mutable operation
on an instantiable data structure preserves the values of all instances in the heap
other than the receiver parameter;

• preserves the representation invariants;

• never causes run-time errors such as null dereference or array bounds violation.

We were able to prove such properties for an implementation of a hash table, a mutable list,
a functional implementation of an ordered binary search tree, and a functional association
list. All these data structures are instantiable (as opposed to global), which means that data
structure clients can create an unbounded number of their instances. Jahob verifies that
changes to one instance do not cause changes to other instances. In addition, we verified
a simple client, a library system, that instantiates several set and relation data structures
and maintains object-model like constraints on them in the presence of changes to sets and
relations.

What is remarkable is that we were able to establish these results using a general-purpose
technique and standard logical formalisms, without specializing our system for particular
classes of properties. The fact that we can use continuously improving resolution-based
theorem provers with standardized interfaces suggests that this technique is likely to remain
competitive in the future.

From the theorem proving perspective, we expect the techniques we identify in this
chapter to help make future theorem provers even more useful for program verification
tasks. From the program verification perspective, our experience suggests that we can
expect to use reasoning based on first-order logic to verify a wide range of data structures
and then use these data structures to build and verify larger applications.

5.1 Binary Tree Example

We illustrate our technique using an example of a binary search tree implementing a finite
map. Our implementation is persistent (immutable), meaning that the operations do not
mutate existing objects, but only newly allocated objects. This makes the verification easier
and provides a data structure which is useful in, for example, backtracking algorithms (see
[203] for other advantages and examples of immutable data structures).

Figure 5-1 shows the public interface of our tree data structure. The interface introduces
an abstract specification variable content as a set of (key,value)-pairs and specifies the
contract of each procedure using a precondition (given by the requires keyword) and
postcondition (given by the ensures keyword). The methods have no modifies clauses,
indicating that they only mutate newly allocated objects.

Figure 5-2 presents the lookup operation. The operation examines the tree and returns
the appropriate element. Note that, to prove that lookup is correct, one needs to know
the relationship between the abstract variable content and the data structure fields left,

67

www.manaraa.com

public ghost specvar content :: "(int * obj) set" = "{}";

public static FuncTree empty_set()

ensures "result..content = {}"

public static FuncTree add(int k, Object v, FuncTree t)

requires "v ~= null & (ALL y. (k,y) ~: t..content)"

ensures "result..content = t..content + {(k,v)}"

public static FuncTree update(int k, Object v, FuncTree t)

requires "v ~= null"

ensures "result..content = t..content - {(x,y). x=k} + {(k,v)}"

public static Object lookup(int k, FuncTree t)

ensures "(result ~= null & (k, result) : t..content)

| (result = null & (ALL v. (k,v) ~: t..content))"

public static FuncTree remove(int k, FuncTree t)

ensures "result..content = t..content - {(x,y). x=k}"

Figure 5-1: Method contracts for a tree implementation of a map

public static Object lookup(int k, FuncTree t)

/*: ensures "(result ~= null & (k, result) : t..content)

| (result = null & (ALL v. (k,v) ~: t..content))" */

{

if (t == null)

return null;

else

if (k == t.key) return t.data;

else if (k < t.key) return lookup(k, t.left);

else return lookup(k, t.right);

}

Figure 5-2: Lookup operation for retrieving the element associated with a given key

68

www.manaraa.com

class FuncTree {

private int key;

private Object data;

private FuncTree left;

private FuncTree right;

/*:

public ghost specvar content :: "(int * obj) set" = "{}";

invariant nullEmpty: "this = null --> content = {}"

invariant contentDefinition: "this ~= null & this..init -->

content = {(key, data)} + left..content + right..content"

invariant noNullData: "this ~= null --> data ~= null"

invariant leftSmaller: "ALL k v. (k,v) : left..content --> k < key"

invariant rightBigger: "ALL k v. (k,v) : right..content --> k > key"

*/

Figure 5-3: Fields and representation invariants for the tree implementation

right, key, and data. In particular, it is necessary to conclude that if an element is not
found, then it is not in the data structure. Such conditions refer to private fields, so they
are given by representation invariants. Figure 5-3 presents the representation invariants
for our tree data structure. Using these representation invariants and the precondition,
Jahob proves (in 4 seconds) that the postcondition of the lookup method holds and that
the method never performs null dereferences. For example, when analyzing tree traver-
sal in lookup, Jahob uses the sortedness invariants (leftSmaller, rightBigger) and the
definition of tree content contentDefinition to narrow down the search to one of the
subtrees.

Jahob also ensures that the operations preserve the representation invariants. Jahob
reduces invariants in Figure 5-3 to global invariants by implicitly quantifying them over all
allocated objects of FuncTree type. This approach yields simple semantics to constraints
that involve multiple objects in the heap. When a method allocates a new object, the set of
all allocated objects is extended, so a proof obligation will require that these newly allocated
objects also satisfy their representation invariants at the end of the method.

Figure 5-4 shows the map update operation in our implementation. The postcondition
of update states that all previous bindings for the given key are absent in the resulting
tree. Note that proving this postcondition requires the sortedness invariants leftSmaller,
rightBigger. Moreover, it is necessary to establish all representation invariants for the
newly allocated FuncTree object.

The specification field content is a ghost field, so its value changes only in response to
specification assignment statements, such as the one in the penultimate line of Figure 5-4.
The use of ghost variables is sound an can be explained using simulation relations [77]. For
example, if the developer incorrectly specifies specification assignments, Jahob will detect
the violation of the representation invariants such as contentDefinition. If the devel-
oper specifies incorrect representation invariants, Jahob will fail to prove postconditions of
observer operations such as lookup in Figure 5-2.

69

www.manaraa.com

public static FuncTree update(int k, Object v, FuncTree t)

/*: requires "v ~= null"

ensures "result..content = t..content - {(x,y). x=k} + {(k,v)}" */

{

FuncTree new_left, new_right;

Object new_data;

int new_key;

if (t==null) {

new_data = v;

new_key = k;

new_left = null;

new_right = null;

} else {

if (k < t.key) {

new_left = update(k, v, t.left);

new_right = t.right;

new_key = t.key;

new_data = t.data;

} else if (t.key < k) {

new_left = t.left;

new_right = update(k, v, t.right);

new_key = t.key;

new_data = t.data;

} else {

new_data = v;

new_key = k;

new_left = t.left;

new_right = t.right;

}

}

FuncTree r = new FuncTree();

r.left = new_left;

r.right = new_right;

r.data = new_data;

r.key = new_key;

//: "r..content" := "t..content - {(x,y). x=k} + {(k,v)}";

return r;

}

Figure 5-4: Map update implementation for functional tree

70

www.manaraa.com

Jahob verifies (in 10 seconds) that the update operation establishes the postcondition,
correctly maintains all invariants, and performs no null dereferences. As discussed in Sec-
tion 3.3, Jahob establishes such conditions by first converting the Java program into a
loop-free guarded-command language using user-provided or automatically inferred loop
invariants. (The examples in this chapter mostly use recursion instead of loops.) A verifi-
cation condition generator then computes a formula whose validity entails the correctness
of the program with respect to its explicitly supplied specifications (such as invariants and
procedure contracts) as well as the absence of run-time exceptions (such as null pointer
dereferences, failing type casts, and array out of bounds accesses). The specification lan-
guage and the generated verification conditions in Jahob are expressed in higher-order logic
described in Section 4.1. In the rest of this chapter we show how we translate such verifi-
cation conditions to first-order logic and prove them using theorem provers such as SPASS
[248] and E [228].

5.2 Translation to First-Order Logic

This section presents our translation from an expressive subset of Isabelle formulas (the
input language) to first-order unsorted logic with equality (the language accepted by first-
order resolution-based theorem provers). The soundness of the translation is given by the
condition that, if the translated formula is valid, so is the input formula.

Input language. The input language allows constructs such as lambda expressions, func-
tion update, sets, tuples, quantifiers, cardinality operators, and set comprehensions. The
translation first performs type reconstruction. It uses the type information to disambiguate
operations such as equality, whose translation depends on the type of the operands.

Splitting into sequents. Generated proof obligations can be represented as conjunctions
of multiple statements, because they represent all possible paths in the verified procedure,
the validity of multiple invariants and postcondition conjuncts, and the absence of run-time
errors at multiple program points. The first step in the translation splits formulas into
these individual conjuncts to prove each of them independently. This process does not lose
completeness, yet it improves the effectiveness of the theorem proving process because the
resulting formulas are smaller than the starting formula. Moreover, splitting enables Jahob
to prove different conjuncts using different techniques, allowing the translation described
in this chapter to be combined with other translation and approximation approaches, as
described in Section 4.3. After splitting, the resulting formulas have the form of implications
A1 ∧ . . . ∧An → G, which we call sequents. We call A1, . . . , An the assumptions and call G
the goal of the sequent. The assumptions typically encode a path in the procedure being
verified, the precondition, class invariants that hold at procedure entry, as well as properties
of our semantic model of memory and the relationships between sets representing Java
types. During splitting, Jahob also performs syntactic checks that eliminate some simple
valid sequents such as the ones where the goal G of the sequent is equal to one of the
assumptions Ai.

Definition substitution and function unfolding. When one of the assumptions is a
variable definition, the translation substitutes its content in the rest of the formula (using
rules in Figure 5-5). This approach supports definitions of variables that have complex
and higher-order types, but are used simply as shorthands, and avoids the full encoding
of lambda abstraction in first-order logic. When the definitions of variables are lambda

71

www.manaraa.com

abstractions, the substitution enables beta reduction, which is done subsequently. In ad-
dition to beta reduction, this phase also expands the equality between functions using the
extensionality rule (f = g becomes ∀x.f x = g x).

Cardinality constraints. Constant cardinality constraints express natural generaliza-
tions of quantifiers. For example, the statement “there exists at most one element satisfying
P” is given by card {x. P x} ≤ 1. Our translation reduces constant cardinality constraints
to first-order logic with equality (using rules in Figure 5-6).

Set expressions. Our translation uses universal quantification to expand set operations
into their set-theoretic definitions in terms of the set membership operator. This process also
eliminates set comprehensions by replacing x ∈ {y |ϕ} with ϕ[y 7→ x]. (Figure 5-7 shows
the details.) These transformations ensure that the only set expressions in formulas are
either set variables or set-valued fields occurring on the right-hand side of the membership
operator.

Our translation maps set variables to unary predicates: x ∈ S becomes S(x), where
S is a predicate in first-order logic. This translation is applicable when S is universally
quantified at the top level of the sequent (so it can be skolemized), which is indeed the case
for the proof obligations arising from the examples in this chapter. Fields of type object or
integer become uninterpreted function symbols: y = x.f translates as y = f(x). Set-valued
fields become binary predicates: x ∈ y.f becomes F (y, x) where F is a binary predicate.

Function update. Function update expressions (encoded as functions fieldWrite and
arrayWrite in our input language) translate using case analysis (Figure 5-8). If applied to
arbitrary expressions, such case analysis would duplicate expressions, potentially leading to
exponentially large expressions. To avoid this problem, the translation first flattens expres-
sions by introducing fresh variables and then duplicates only variables and not expressions,
keeping the translated formula polynomial.

Flattening. Flattening introduces fresh quantified variables, which could in principle
create additional quantifier alternations, making the proof process more difficult. How-
ever, each variable can be introduced using either existential or universal quantifier because
∃x.x=a ∧ ϕ is equivalent to ∀x.x=a → ϕ. Our translation therefore chooses the quantifier
kind that corresponds to the most recently bound variable in a given scope (taking into
account the polarity), preserving the number of quantifier alternations. The starting quan-
tifier kind at the top level of the formula is ∀, ensuring that freshly introduced variables for
quantifier-free expressions become skolem constants.

Arithmetic. Resolution-based first-order provers do not have built-in arithmetic oper-
ations. Our translation therefore introduces axioms (Figure 5-10) that provide a partial
axiomatization of integer operations +, <,≤. In addition, the translation supplies axioms
for the ordering relation between all numeric constants appearing in the input formula.
Although incomplete, these axioms are sufficient to verify our list, tree, and hash table data
structures.

Tuples. Tuples in the input language are useful, for example, as elements of sets repre-
senting relations, such as the content ghost field in Figure 5-3. Our translation eliminates
tuples by transforming them into individual components. Figure 5-9 illustrates some rele-
vant rewrite rules for this transformation. The translation maps a variable x denoting an
n-tuple into n individual variables x1, . . . , xn bound in the same way as x. A tuple equal-
ity becomes a conjunction of equalities of components. The arity of functions changes to

72

www.manaraa.com

Var-True
(H1 ∧ · · · ∧Hi−1 ∧ v ∧Hi+1 ∧ · · · ∧Hn) =⇒ G

[

(H1 ∧ · · · ∧Hi−1 ∧Hi+1 ∧ · · · ∧Hn) =⇒ G
]

{v 7→ True}

Var-False

(H1 ∧ · · · ∧Hi−1 ∧ ¬v ∧Hi+1 ∧ · · · ∧Hn) =⇒ G
[

(H1 ∧ · · · ∧Hi−1 ∧Hi+1 ∧ · · · ∧Hn) =⇒ G
]

{v 7→ False}

Var-Def
(H1 ∧ · · · ∧Hi−1 ∧ v = ϕ ∧Hi+1 ∧ · · · ∧Hn) =⇒ G

[

(H1 ∧ · · · ∧Hi−1 ∧Hi+1 ∧ · · · ∧Hn) =⇒ G
]

{v 7→ ϕ}

v /∈ FV (ϕ)
Var-True cannot be applied
Var-False cannot be applied

Figure 5-5: Rules for definition substitution

accommodate all components, so a function taking an n-tuple and an m-tuple becomes a
function symbol of arity n+m. The translation handles sets as functions from elements to
booleans. For example, a relation-valued field content of type obj => (int * obj) set is
viewed as a function obj => int => obj => bool and therefore becomes a ternary predicate
symbol.

Approximation. Our translation maps higher-order formulas into first-order logic without
encoding lambda calculus or set theory, so there are constructs that it cannot translate
exactly. Examples include transitive closure (which, in the case of tree-like data structures,
can be translated into monadic second-order logic using the techniques of Chapter 6) and
symbolic cardinality constraints (which, in the absence of relations, can be handled using
the BAPA decision procedure of Chapter 7). Our first-order translation approximates such
subformulas in a sound way, by replacing them with true or false depending on the polarity
of the subformula occurrence. The result of the approximation is a stronger formula whose
validity implies the validity of the original formula.

Simplifications and further splitting. In the final stage, the translation performs a
quick simplification pass that reduces the size of formulas, by, for example, eliminating most
occurrences of true and false. Next, because constructs such as equality of sets and functions
introduce conjunctions, the translation performs further splitting of the formula to improve
the success of the proving process. 1

5.3 From Multisorted to Unsorted Logic

This section discusses our approach for handling type and sort information in the translation
to first-order logic with equality. This approach proved essential for making verification of
our examples feasible. The key insight is that omitting sort information 1) improves the
performance of the theorem proving effort, and 2) is guaranteed to be sound in our context.

To understand our setup, note that the verification condition generator in Jahob pro-
duces proof obligations in higher-order logic notation whose type system essentially corre-
sponds to simply typed lambda calculus [26] (we allow some simple forms of parametric

1We encountered an example of a formula ϕ1 ∧ ϕ2 where a theorem prover proves each of ϕ1 and ϕ2

independently in a few seconds, but requires more than 20 minutes to prove ϕ1 ∧ ϕ2.

73

www.manaraa.com

Card-Constraint-eq

cardS = k

cardS ≤ k ∧ cardS ≥ k

Card-Constraint-Leq

cardS ≤ k

∃x1, . . . , xk.S ⊆ {x1, . . . , xk}

Card-Constraint-Geq

cardS ≥ k

∃x1, . . . , xk. {x1, . . . , xk} ⊆ S ∧
∧

1≤i<j≤k

xi 6= xj

Figure 5-6: Rules for constant cardinality constraints

Set-Inclusion

S1 ⊆ S2

∀x.x ∈ S1 → x ∈ S2

Set-Equality

S1 = S2

∀x.x ∈ S1 ⇐⇒ x ∈ S2

Intersection

x ∈ S1 ∩ S2

x ∈ S1 ∧ x ∈ S2

Union
x ∈ S1 ∪ S2

x ∈ S1 ∨ x ∈ S2

Difference
x ∈ S1 \ S2

x ∈ S1 ∧ x /∈ S2

FiniteSet
x ∈ {O1, . . . , Ok}

x = O1 ∨ · · · ∨ x = Ok

Comprehension

x ∈ {y | ϕ}

ϕ[y 7→ x]

Figure 5-7: Rules for complex set expressions

polymorphism but expect each occurrence of a symbol to have a ground type). The type
system in our proof obligations therefore has no subtyping, so all Java objects have type
obj. The verification-condition generator encodes Java classes as immutable sets of type
obj set. It encodes primitive Java integers as mathematical integers of type int (which is
disjoint from obj). The result of the translation in Section 5.2 is a formula in multisorted
first-order logic with equality and two disjoint sorts, obj and int.2 On the other side, the
standardized input language for first-order theorem provers is untyped first-order logic with
equality. The key question is the following: How should we encode multisorted first-order
logic into untyped first-order logic?

The standard approach [177, Chapter 6, Section 8] is to introduce a unary predicate
Ps for each sort s, replace ∃x::s.F (x) with ∃x.Ps(x) ∧ F (x), and replace ∀x::s.F (x) with
∀x.Ps(x)→ F (x) (where x :: s in multisorted logic denotes that the variable x has the sort
s). In addition, for each function symbol f of sort s1 × . . . sn → s, introduce a Horn clause
∀x1, . . . , xn. Ps1(x1) ∧ . . . ∧ Psn(xn)→ Ps(f(x1, . . . , xn)).

The standard approach is sound and complete. However, it makes formulas larger, often
substantially slowing down the automated theorem prover. What if we omitted the sort
information given by unary sort predicates Ps, representing, for example, ∀x::s.F (x) simply
as ∀x.F (x)? For potentially overlapping sorts, this approach is unsound. As an example,
take the conjunction of two formulas ∀x::Node.F (x) and ∃x::Object.¬F (x) for distinct sorts
Object and Node where Node is a subsort of Object. These assumptions are consistent in

2The resulting multisorted logic has no sort corresponding to booleans (as in [177, Chapter 6]). Instead,
propositional operations are part of the logic itself.

74

www.manaraa.com

Object-Field-Write-Read

V1 = fieldWrite (f, V2, V3)(V4)

(V4 = V2 ∧ V1 = V3) ∨ (V4 6= V2 ∧ V1 = f(V4))

Object-Array-Write-Read

V1 = arrayWrite (fa, V2, V3, V4)(V5, V6)

(V5 = V2 ∧ V6 = V3 ∧ V1 = V4) ∨ (¬ (V5 = V2 ∧ V6 = V3) ∧ V1 = fa(V5, V6))

Function-argument

V = g(V1, ..., Vi−1, C, Vi+1, ..., Vk)

∃u.u = C ∧ V = g(V1, ..., Vi−1, u, Vi+1, ..., Vk)

Equality-Normalization

C = V

V = C

Equality-Unfolding

C1 = C2

∃v.v = C1 ∧ v = C2

Set-Field-Write-Read

V1 ∈ fieldWrite (f, V2, V3)(V4)

(V4 = V2 ∧ V1 ∈ V3) ∨ (V4 6= V2 ∧ V1 ∈ f(V4))

Membership-Unfolding

C ∈ T

∃v.v = C ∧ v ∈ T

Figure 5-8: Rewriting rules to rewrite complex field expressions. C denotes a complex
term; V denotes a variable; f denotes a field or array function identifier (not a complex
expression).

(x1, ..., xn) = (y1, ..., yn)
n
∧

i=1

xi = yi

z = (y1, ..., yn)
n
∧

i=1

zi = yi

z = y z : S1 × ...× Sn

n
∧

i=1

zi = yi

(y1, ..., yn) ∈ S

S(y1, ..., yn)

(y1, ..., yn) ∈ x.f

F (x, y1, ..., yn)

z ∈ S z : S1 × ...× Sn

S(z1, ..., zn)

z ∈ x.f z : S1 × ...× Sn

F (x, z1, ..., zn)

Q(z : S1 × ...× Sn).ϕ

Q(z1 : S1, ..., zn : Sn).ϕ

Figure 5-9: Rules for removal of tuples

75

www.manaraa.com

∀n. n ≤ n

∀nm. (n ≤ m ∧m ≤ n)→ n = m

∀nm. (n ≤ m ∧m ≤ o)→ n ≤ o

∀nm. (n ≤ m) ⇐⇒ (n = m ∨ ¬(m ≤ n))

∀nmp q. (n ≤ m ∧ p ≤ q)→ n+ p ≤ m+ q

∀nmp q. (n ≤ m ∧ p ≤ q)→ n− q ≤ m− p

∀nmp. n ≤ m→ n+ p ≤ m+ p

∀nmp. n ≤ m→ n− p ≤ m− p

∀nm. n+m = m+ n

∀nmp. (n+m) + p = n+ (m+ p)

∀n. n+ 0 = n

∀n. n− 0 = n

∀n. n− n = 0

Figure 5-10: Arithmetic axioms optionally conjoined with the formulas

multisorted logic. However, their unsorted version ∀x.F (x) ∧ ∃x.¬F (x) is contradictory,
and would allow a verification system to unsoundly prove arbitrary claims.

In our case, however, the two sorts considered (int and obj) are disjoint. Moreover, there
is no overloading of predicate or function symbols. If we consider a standard resolution
proof procedure for first-order logic [19] (without paramodulation) under these conditions,
we can observe the following.

Observation 1 Performing an unsorted resolution step on well-sorted clauses (while ig-
noring sorts in unification) generates well-sorted clauses.

As a consequence, there is a bijection between resolution proofs in multisorted and unsorted
logic. By completeness of resolution, omitting sorts and using unsorted resolution is a sound
and complete technique for proving multisorted first-order formulas.

Observation 1 only applies if each symbol has a unique sort (type) signature (i.e., there
is no overloading of symbols), which is true for all symbols except for equality. To make
it true for equality, a multi-sorted language with disjoint sorts would need to have one
equality predicate for each sort. Unfortunately, theorem provers we consider have a built-in
support only for one privileged equality symbol. Using user-defined predicates and supplying
congruence axioms would fail to take advantage of the support for paramodulation rules
[199] in these provers. What if, continuing our brave attempt at omitting sorts, we merge
translation of all equalities, using the special equality symbol regardless of the sorts to
which it applies? The result is unfortunately unsound in general. As an example, take the
conjunction of formulas ∀x::obj.∀y::obj.x = y and ∃x::int.y::int.¬(x = y). These formulas
state that the obj sort collapses to a single element but the int sort does not. Omitting
sort information yields a contradiction and is therefore unsound. Similar examples exists
for statements that impose other finite bounds on distinct sorts.

In our case, however, we can assume that both int and obj are countably infinite. More
generally, when the interpretation of disjoint sorts are sets of equal cardinality, such exam-
ples have the same truth value in the multisorted case as well as in the case with equality.
More precisely, we have the following result. Let ϕ∗ denote the result of omitting all sort

76

www.manaraa.com

Time (s) Proof length Generated clauses
Benchmark

SPASS E SPASS SPASS E
w/o w. w/o w. w/o w. w/o w. w/o w.

1.1 5.3 30.0 349.0 155 799 9425 18376 122508 794860
0.3 3.6 10.4 42.0 309 1781 1917 19601 73399 108910
4.9 9.8 15.7 18.0 174 1781 27108 33868 100846 256550

remove
0.5 8.1 12.5 45.9 301 1611 3922 31892 85164 263104
4.7 8.1 17.9 19.3 371 1773 28170 37244 109032 176597
0.3 7.9 10.6 41.8 308 1391 3394 41354 65700 287253

0.22 +∞ 59.0 76.5 97 - 1075 - 872566 953451
remove max 6.8 78.9 14.9 297.6 1159 2655 19527 177755 137711 1512828

0.8 34.8 38.1 0.7 597 4062 5305 115713 389334 7595

Figure 5-11: Verification time, and proof data using the prover SPASS, on the hardest
formulas from the functional tree example.

information from a multisorted formula ϕ and representing the equality (regardless of the
sort of arguments) using the built-in equality symbol.

Theorem 2 Assume that there are finitely many pairwise disjoint sorts, that their inter-
pretations are sets of equal cardinality, and that there is no overloading of predicate and
function symbols other than equality. Then there exists a function mapping each multi-
sorted structure I into an unsorted structure I∗ and each multisorted environment ρ to an
unsorted environment ρ∗, such that the following holds: for each formula ϕ, structure I,
and a well-sorted environment ρ,

Jϕ∗KI
∗

ρ∗ if and only if JϕKIρ

The proof of Theorem 2 is in Section 5.9. It constructs I∗ by taking a new set S of same
cardinality as the sort interpretations S1, . . . , Sn in I, and defining the interpretation of
symbols in I∗ by composing the interpretation in I with bijections fi : Si → S. Theorem 2
implies that if a formula (¬ψ)∗ is unsatisfiable, then so is ¬ψ. Therefore, if ψ∗ is valid, so
is ψ. In summary, for disjoint sorts of same cardinality, omitting sorts is a sound method
for proving validity, even in the presence of an overloaded equality symbol.

A resolution theorem prover with paramodulation rules can derive ill-sorted clauses
as consequences of ϕ∗. However, Theorem 2 implies that the existence of a refutation of
ϕ∗ implies that ϕ is also unsatisfiable, guaranteeing the soundness of the approach. This
approach is also complete. Namely, notice that stripping sorts only increases the set of
resolution steps that can be performed on a set of clauses. Therefore, we can show that if
there exists a proof for ϕ, there exists a proof of ϕ∗. Moreover, the shortest proof for the
unsorted case is no longer than any proof in multisorted case. As a result, any advantage of
preserving sorts comes from the reduction of the branching factor in the search, as opposed
to the reduction in proof length.

Impact of omitting sort information. Figure 5-11 shows the effect of omitting sorts on
some of the most problematic formulas that arise in our benchmarks. They are the formulas
that take more than one second to prove using SPASS with sorts, in the two hardest methods
of our tree implementation. The figure shows that omitting sorts usually yields a speed-up
of one order of magnitude, and sometimes more. In our examples, the converse situation,
where omitting sorts substantially slows down the theorem proving process, is rare.

77

www.manaraa.com

5.4 Assumption Filtering

Typically, the theorem prover only needs a subset of assumptions of a sequent to establish
its validity. Indeed, the FuncTree.remove procedure has a median proof length of 4; with
such a small number of deduction steps only a fraction of all the assumptions are necessary.
Unnecessary assumptions can dramatically increase the running time of theorem provers
and cause them to fail to terminate in a reasonable amount of time, despite the use of
selection heuristics in theorem prover implementations.

Finding a minimal set of assumption is in general as hard as proving the goal. We
therefore use heuristics that run in polynomial time to select assumptions likely to be
relevant. Our technique is based on [186], but is simpler and works at the level of formulas
(after definition substitution and beta reduction) as opposed to clauses. The technique ranks
the assumptions and sorts them in the ranking order. A command-line option indicates the
percentage of the most highly ranked assumptions to retain in the proof obligation.

Impact of filtering. We verified the impact of assumption filtering on a set of 2000
valid formulas generated by our system, with the average number of assumptions being
48.5 and the median 43. After ranking the assumptions, we measured the number of the
most relevant assumptions that we needed to retain for the proof to still succeed. With our
simple ranking technique, the average required number of relevant assumptions was 16, and
the median was 11. One half of the formulas of this set are proved by retaining only the
top one third of the original assumptions.

Assumption filtering yields an important speed-up in the verification of the hash table
implementation of a relation. The hash table is implemented using an array, and our system
checks that all array accesses are within bounds. This requires the ordering axioms for the ≤
operator. However, when proving that operations correctly update the hash table content,
these axioms are not required, and confuse SPASS: the verification of the insertion method
takes 211 seconds with all assumptions, and only 1.3 second with assumption filtering set
to 50%. In some cases this effect could be obtained manually, by asking the system to try
to prove the formula first without, and then with the arithmetic axioms, but assumption
filtering makes the specification of command-line parameters simpler and decreases the
overall running time.

5.5 Experimental Results

We implemented our translation to first-order logic and the interfaces to the first-order
provers E [228] (using the TPTP format for first-order formulas [234]) and SPASS [248]
(using its native format). We also implemented filtering described in Section 5.4 to au-
tomate the selection of assumptions in proof obligations. We evaluated our approach by
implementing several data structures, using the system during their development. In addi-
tion to the implementation of a relation as a functional tree presented in Section 5.1, we
ran our system on dynamically instantiable sets and relations implemented as a functional
singly-linked list, an imperative linked list, and a hash table. We also verified operations
of a data structure client that instantiates a relation and two sets and maintains invariants
between them.

Table 5-12 illustrates the benchmarks we ran through our system and shows their ver-
ification times. Lines of code and of specifications are counted without blank lines or

78

www.manaraa.com

Benchmark lines of code lines of specification number of methods

Relation as functional list 76 26 9
Relation as functional Tree 186 38 10
Set as imperative list 60 24 9
Library system 97 63 9
Relation as hash table 69 53 10

Benchmark Prover method
total

time (sec)
prover

time (sec)
formulas
proved

cons 0.9 0.8 9
remove all 1.7 1.1 5
remove 3.9 2.6 7

AssocList E lookup 0.7 0.4 3
image 1.3 0.6 4
inverseImage 1.2 0.6 4
domain 0.9 0.5 3
entire class 11.8 7.3 44
add 7.2 5.7 24
update 9.0 7.4 28
lookup 1.2 0.6 7
min 7.2 6.6 21

FuncTree SPASS+E max 7.2 6.5 22
removeMax 106.5 (12.7) 46.6+59.3 9+11
remove 17.0 8.2+ 0 26+0
entire class 178.4 96.0+65.7 147+16
add 1.5 1.2 9
member 0.6 0.3 7

Imperative
List

SPASS getOne 0.1 0.1 2

remove 11.4 9.9 48
entire class 17.9 14.9+0.1 74
currentReader 1.0 0.9 5
checkOutBook 2.3 1.7 6

Library E returnBook 2.7 2.1 7
decommissionBook 3.0 2.2 7
entire class 20.0 17.6 73
init 25.5 (3.8) 25.2 (3.4) 12
add 2.7 1.6 7
add1 22.7 22.7 14

HashTable SPASS lookup 20.8 20.3 9
remove 57.1 56.3 12
update 1.4 0.8 2
entire class 119 113.8 75

Figure 5-12: Benchmarks Characteristics and Verification Times

79

www.manaraa.com

comments. 3

Our system accepts as command-line parameters timeouts, percentage of retained as-
sumptions in filtering, and two flags that indicate desired sets of arithmetic axioms. For
each module, we used a fixed set of command line options to verify all the procedures in that
module. Some methods can be verified faster (in times shown in parentheses) by choosing
a more fine-tuned set of options. Jahob allows specifying a cascade of provers to be tried
in sequence; when we used multiple provers we give the time spent in each prover and the
number of formulas proved by each of them. Note that all steps of the cascade run on the
same input and are perfectly parallelizable. Running all steps in parallel is an easy way to
reduce the total running time. Similar parallelization opportunities arise across different
conjuncts that result from splitting, because splitting is done ahead of time, before invoking
any theorem provers.

The values in the “entire class” row for each module are not the sum of all the other
rows, but the time actually spent in the verification of the entire class, including some
methods not shown and the verification that the invariants hold initially. Running time of
first-order provers dominates the verification time, the remaining time is mostly spent in
our simple implementation of polymorphic type inference for higher-order logic formulas.

Verification experience. The time we spent to verify these benchmarks went down as
we improved the system and gained experience using it. It took approximately one week
to code and verify the ordered trees implementation. However, it took only half a day to
write and verify a simple version of the hash table. It took another few days to verify an
augmented version with a rehash function that can dynamically resize its array when its
filling ratio is too high.

On formulas generated from our examples, SPASS seems to be overall more effective.
However, E is more effective on some hard formulas involving complex arithmetic. There-
fore, we use a cascading system of multiple provers. We specify a sequence of command line
options for each prover, which indicate the timeout to use, the sets of axioms to include, and
the amount of filtering to apply. For example, to verify the entire FuncTree class, we used
the following cascade of provers: 1) SPASS with two-second timeout and 50% assumption
filtered; 2) SPASS with two-second timeout, axioms of the order relation over integers and
75% assumption filtered; and 3) E without timeout, with the axioms of the order relation
and without filtering. Modifying these settings can result in a great speed-up (for example,
FuncTree.removeMax verifies in 13 seconds with tuned settings as opposed to 106 seconds
with the global settings common to the entire class). Before we implemented assumption
filtering, we faced difficulties finding a set of options allowing the verification of the entire
FuncTree class. Namely, some proof obligations require arithmetic axioms, and for others
adding these settings would cause the prover to fail. Next, some proof obligations require
background axioms (general assumptions that encode our memory model), but some work
much faster without them. Assumption filtering allows the end-user to worry less about
these settings.

3We ran the verification on a single-core 3.2 GHz Pentium 4 machine with 3GB of memory, running
GNU/Linux. As first-order theorem provers we used SPASS and E in their automatic settings. The E version
we used comes from the CASC-J3 (Summer 2006) system archive and calls itself v0.99pre2 “Singtom”. We
used SPASS v2.2, which comes from its official web page.

80

www.manaraa.com

ϕ ::= P (t1, . . . , tn) | t1 = t2 | ¬ϕ | ϕ1 ∧ ϕ2 | ∃x. F

t ::= x | f(t1, . . . , tn)

Figure 5-13: Syntax of Unsorted First-Order Logic with Equality

ϕ ::= P (t1, . . . , tn) | t1 = t2 | ¬ϕ | ϕ1 ∧ ϕ2 | ∃x::s. F

Figure 5-14: Syntax of Multisorted First-Order Logic with Equality

5.6 First-Order Logic Syntax and Semantics

To avoid any ambiguity, this section presents the syntax and semantics of unsorted and
multisorted first-order logic. We use this notation in the proofs in the following sections.

5.6.1 Unsorted First-Order Logic with Equality

An unsorted signature Σ is given by:

• a set V of variables;

• a set P of predicate symbols, each symbol P ∈ P with arity ar(P) > 0;

• a set F of function symbols, each symbol f ∈ F with arity ar(f) ≥ 0.

Figure 5-13 shows the syntax of unsorted first-order logic. Constants are function symbols
of arity 0.

An unsorted Σ-structure I is given by:

• the domain set X = dom(I);

• for every predicate P ∈ P with ar(P) = n, the interpretation JP KI ⊆ Xn defining the
tuples on which P is true;

• for every function symbol f in F of arity n, a set of tuples JfKI ⊆ Xn+1, which
represents the graph of a total function Xn → X.

An I-environment ρ is a function V → X from variables to domain elements.

The interpretation of a term t in structure I and environment ρ is denoted JtKIρ and is
given inductively as follows:

• JxKIρ = ρ(x), if x ∈ V is a variable;

• Jf(x1, . . . , xn)KIρ = y where (Jx1K
I
ρ , . . . , JxnKIρ , y) ∈ JfKI, if f ∈ F is a function symbol

of arity n ≥ 0.

81

www.manaraa.com

Interpretation of a formula ϕ in structure I and environment ρ is denoted JϕKIρ and is given
inductively as follows:

JP (t1, . . . , tn)KIρ = (Jt1K
I
ρ , . . . , JtnKIρ) ∈ JP KI

Jt1 = t2K
I
ρ = (Jt1K

I
ρ=Jt2K

I
ρ)

Jϕ1 ∧ ϕ2K
I
ρ = Jϕ1K

I
ρ ∧ Jϕ2K

I
ρ

J¬ϕKIρ = ¬JϕKIρ

J∃x.ϕKIρ = ∃a ∈ dom(I).JϕKIρ[x 7→a]

where ρ[x 7→ a](y) = ρ(y) for y 6= x and ρ[x 7→ a](x) = a.

5.6.2 Multisorted First-Order Logic with Equality

A multisorted signature Σ with sorts σ = {s1, . . . , sn} is given by:

• a set V of variables, each variable x ∈ V with its sort ar(x) ∈ σ;

• a set P of predicates, each symbol P ∈ P with a sort signature ar(P) ∈ σn for some
n > 0;

• a set F of function symbols, each symbol f ∈ F with a sort signature ar(f) ∈ σn+1;
we write ar(f) : s1 ∗ . . . ∗ sn → sn+1 if ar(f) = (s1, . . . , sn, sn+1).

Figure 5-14 shows the syntax of multisorted first-order logic with equality, which differs from
the syntax of the unsorted first-order logic with equality in that each quantifier specifies
the sort of the bound variable. In addition, we require the terms and formulas to be well-
sorted, which means that predicates and function symbols only apply to arguments of the
corresponding sort, and equality applies to terms of the same sort.

A multisorted Σ-structure I is given by:

• for each sort si, a domain set Si = JsiK
I ;

• for every predicate P in P of type s1 ∗ . . . ∗ sn, a relation JP KI ⊆ S1 × . . . × Sn for
JsiK

I = Si, defining the tuples on which P is true;

• for every function symbol f in F of type s1 ∗ . . . ∗ sn → sn+1, the function graph
f ⊆ S1 × . . .× Sn × Sn+1 of a total function that interprets symbol f .

A multisorted environment ρ maps every variable x ∈ Var with sort si to an element of Si,
so ρ(x) ∈ Jar(x)KI ;

We interpret terms the same way as in the unsorted case. We interpret formulas analo-
gously as in the unsorted case, with each bound variable of sort si ranging over the inter-
pretation Si of the sort si.

JP (t1, . . . , tn)KIρ = (Jt1K
I
ρ , . . . , JtnKIρ) ∈ JP KI

Jt1 = t2K
I
ρ = (Jt1K

I
ρ=Jt2K

I
ρ)

Jϕ1 ∧ ϕ2K
I
ρ = Jϕ1K

I
ρ ∧ Jϕ2K

I
ρ

J¬ϕKIρ = ¬JϕKIρ

J∃x::s.ϕKIρ = ∃a ∈ JsKI.JϕKIρ[x 7→a]

82

www.manaraa.com

x∗ ≡ x

f(t1, . . . , tn)∗ ≡ f(t1
∗, . . . , tn

∗)

P (t1, . . . , tn)∗ ≡ P (t1
∗, . . . , tn

∗)

(t1 = t2)∗ ≡ (t1
∗ = t2

∗)

(ϕ1 ∧ ϕ2)∗ ≡ ϕ1
∗ ∧ ϕ2

∗

(¬ϕ)∗ ≡ ¬ (ϕ∗)

(∃x::s.ϕ)∗ ≡ ∃x. (ϕ∗)

Figure 5-15: Unsorted formula associated with a multisorted formula

5.6.3 Notion of Omitting Sorts from a Formula

If ϕ is a multisorted formula, we define its unsorted version ϕ∗ by eliminating all type
annotations. For a term t, we would write the term t∗ in the same way as t, but we keep in
mind that the function symbols in t∗ have an unsorted signature. The rules in Figure 5-15
make this definition more precise.

5.7 Omitting Sorts in Logic without Equality

In this section we prove that omitting sorts is sound in the first-order language without
equality. We therefore assume that there is no equality symbol, and that each predicate
and function symbol has a unique (ground) type. Under these assumptions we show that
unification for multisorted and unsorted logic coincide, which implies that resolution proof
trees are the same as well. Completeness and soundness of resolution in multisorted and
unsorted logic then implies the equivalence of the validity in unsorted and multisorted logics
without equality.

5.7.1 Multisorted and Unsorted Unification

Unification plays a central role in the resolution process as well as in the proof of our claim.
We review it here for completeness, although the concepts we use are standard. We provide
definitions for the multisorted case. To obtain the definitions for the unsorted case, assume
that all terms and variables have one “universal” sort.

Definition 3 (Substitution) A substitution σ is a mapping from terms to terms such
that σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(t2)).

Substitutions are homomorphisms in the free algebra of terms with variables.

Definition 4 (Unification problem) A unification problem is a set of pairs of terms of
the form: P = {s1

.
= t1, . . . , sn

.
= tn}, where all terms are well-sorted, and both sides of the

.
= operator have the same sort.

Definition 5 (Unifier) A unifier σ for a problem P is a substitution such that σ(si) =
σ(ti) for all constraints si

.
= ti in P.

83

www.manaraa.com

Decompose

P ∪ {f(s1, . . . , sn)
.
= f(t1, . . . , tn)}

P ∪ {s1
.
= t1, . . . , sn

.
= tn}

Orient

P ∪ {t
.
= x} t /∈ V

P ∪ {x
.
= t}

Replace

P ∪ {x
.
= s} x ∈ V ar(P) x /∈ FV (s)

(P[x 7→ s]) ∪ {x
.
= s}

Erase

P ∪ {s
.
= s}

P

Figure 5-16: Unification algorithm

Definition 6 (Resolved form) A problem P is in resolved form iff it is of the form
{x1

.
= t1, . . . , xn

.
= tn}, where, for each 1 ≤ i ≤ n:

1. all xi are pairwise distinct variables (i 6= j → xi 6= xj).

2. xi does not appear in ti (xi /∈ FV (ti)).

Definition 7 (Unifier for resolved form) Let P = {x1
.
= t1, . . . , xn

.
= tn} be a prob-

lem in resolved form. The unifier associated with P is the substitution σP =
{x1 7→ t1, . . . , xn 7→ tn}.

We define the unification algorithm as the set of rewriting rules in Figure 5-16. We assume
a fixed strategy for applying these rules (for example, always apply the first applicable rule
in the list). The resulting algorithm is terminating: when given a unification problem P,
their application yields a unification problem in resolved form P ′. If the result is in resolved
form, then consider σP ′ , the unifier associated with P ′. We call σP ′ the most general unifier
of the unification problem P and denote it mgu(P). If the result P ′ is not in resolved form,
then there does not exist a unifier for P and we define mgu(P) = ⊥ and say that P is not
unifiable. If P = {s

.
= t}, we denote the most general unifier of P by mgu(s

.
= t). For

the purpose of unification we treat predicate symbols just like function symbols returning
boolean sort, and we treat boolean operations as function symbols with boolean arguments
and results; we can therefore write mgu(A

.
= B) for the most general unifier of literals A

and B.
If σ is a substitution in multisorted logic, we write σ∗ for the unsorted substitution

such that σ∗(x) = σ(x)∗. It follows that (σ(t))∗ = σ∗(t∗) for any term t. For a unification
problem P = {s1

.
= t1, . . . , sn

.
= tn}, we define P∗ = {s1

∗ .
= t1

∗, . . . , sn
∗ .

= tn
∗}.

The key observation about multisorted unification with disjoint sorts is the following
lemma.

Lemma 8 Let P be a multisorted unification problem and step(P) denote the result of
applying one step of the unification algorithm in Figure 5-16. Then step(P)∗ = step(P∗)
where step(P∗) is the result of applying one step of the unification algorithm to the unsorted
unification problem P∗. Consequently,

mgu(P)∗ = mgu(P∗)

In particular, P is unifiable if and only if P∗ is unifiable.

84

www.manaraa.com

Resolution

C1 ∨ L1 C2 ∨ L2

σ(C1) ∨ σ(C2)
σ = mgu(L1

.
= L2)

Factorisation

C ∨ L1 ∨ L2

σ(C1) ∨ σ(L1)
σ = mgu(L1

.
= L2)

Figure 5-17: Resolution rules

Lemma 8 essentially shows that omitting sorts during unification yields the same result as
preserving them. The proof uses the fact that

.
= relates terms or formulas of the same type

and that substituting terms with variables of the same type preserves sort constraints.

5.7.2 Multisorted and Unsorted Resolution

We next show that omitting sorts from a set of clauses does not change the set of possible
resolution steps, which implies the soundness of omitting sorts.

We consider a finite set C1, . . . , Cn of well-sorted clauses. A clause is a disjunction of
literals, where a literal is an atomic formula P (t1, . . . , tn) or its negation ¬P (t1, . . . , tn).
If A denotes atomic formulas then we define A as ¬A and ¬A as A. A set C1, . . . , Cn is
well-sorted if C1, . . . , Cn are formulas with free variables in the same multisorted signature,
which implies that the same free variable occurring in two distinct clauses Ci 6= Cj has the
same sort.

Consider a multisorted clause set S = {C1, . . . , Cn}, and its unsorted counterpart S∗ =
{C1

∗, . . . , Cn
∗}. Consider the resolution procedure rules in Figure 5-17.

Lemma 9 If D0 ∈ S
∗ is the result of applying the Resolution rule to C1

∗, C2
∗ ∈ S∗, then D0

is of the form C0
∗ where C0 can be obtained by applying the resolution rule to C1 and C2.

If D0 ∈ S
∗ is the result of applying the Factoring rule to C∗ ∈ S∗, then D0 is of the form

C0
∗ where C0 can be obtained by applying factoring to C.

The proof of Lemma 9 follows from Lemma 8: the most general unifier in the multisorted
proof step is σ such that σ∗ is the most general unifier in the unsorted step.

By induction on the length of the resolution proof, Lemma 9 implies that if an empty
clause can be derived from S∗, then an empty clause can be derived from S. By soundness
and completeness of resolution in both the unsorted and sorted case and the fact that the
skolemization process is isomorphic in the unsorted and multisorted case, we obtain the
desired theorem.

Theorem 10 Let ϕ be a multisorted formula without equality. If ϕ∗ is valid, so is ϕ.

5.8 Completeness of Omitting Sorts

This section continues Section 5.7 and argues that eliminating sort information does not
reduce the number of provable formulas. The following lemma is analogous to Lemma 9 and
states that resolution steps on multisorted clauses can be performed on the corresponding
unsorted clauses.

Lemma 11 If C0 is the result of applying the resolution rule to clauses C1 and C2, then
C0

∗ can be obtained by applying the resolution rule to clauses C1
∗ and C2

∗.

85

www.manaraa.com

If C0 is the result of applying the factoring rule to a clause C, then C0
∗ can be obtained

by applying the factoring rule to clause C∗.

Analogously to Theorem 10 we obtain Theorem 12.

Theorem 12 Let ϕ be a many-sorted formula without equality. If ϕ is valid then so is ϕ∗.

5.9 Soundness of Omitting Sorts in Logic with Equality

Sections 5.7 and 5.8 show that in the absence of an interpreted equality symbol there is
an isomorphism between proofs in the multisorted and unsorted case. This isomorphism
breaks in the presence of equality. Indeed, consider the following clause C:

x = y ∨ f(x) 6= f(y)

expressing injectivity of a function symbol f of type s1 → s2 for two disjoint sorts s1 and
s2. In the unsorted case it is possible to resolve C with itself, yielding

x = y ∨ f(f(x)) 6= f(f(y))

Such a resolution step is, however, impossible in the multisorted case.
In general, eliminating sorts in the presence of equality is unsound, as the conjunction

of formulas
∀x::obj.∀y::obj.x = y
∃x::int.y::int.¬(x = y)

shows. In this section we assume that sorts are of the same cardinality, which eliminates
such examples without being too restrictive in practice. We then prove Theorem 2 stated in
Section 5.3, which implies soundness of omitting sorts even in the presence of an overloaded
equality operator. The key step in the proof of Theorem 2 is the construction of a function
that maps each multisorted structure I into an unsorted structure I∗.

We fix a multisorted signature Σ with sorts s1, . . . , sm and denote by Σ∗ its unsorted
version.

Definition of I∗ and ρ∗. Consider a multisorted structure I over the signature Σ with
m sort interpretations S1, ..., Sm. Because all Si have equal cardinality, there exists a set S
and m functions fi : Si → S, for 1 ≤ i ≤ m, such that fi is a bijection between Si and S.
(For example, take S to be one of the Si.) We let S be the domain of the unsorted model
I∗.

We map a multisorted environment ρ into an unsorted environment ρ∗ by defining
ρ∗(x) = fi(ρ(x)) if x is a variable of sort si.

We define a similar transformation for the predicate and function symbols of I. For
each predicate P of type si1 ∗ . . . ∗ sin , we let

JP KI
∗

= {(fi1(x1), . . . , fin(xin)) | (x1, . . . , xn) ∈ JP KI}

Similarly, for each function symbol f of type si1 ∗ . . . ∗ sin → sin+1 we let

JfKI
∗

= {(fi1(x1), . . . , fin+1(xn+1)) | (x1, . . . , xn+1) ∈ JfKI}

which is a relation denoting a function because the functions fi are bijections.

86

www.manaraa.com

This completes our definition of ρ∗ and I∗. We next show that these definitions have
the desired properties.

Lemma 13 If t is a multisorted term of sort su, and ρ a multi-sorted environment, then

Jt∗KI
∗

ρ∗ = fu(JtKIρ)

Proof. Follows from definition, by induction on term t.

Proof of Theorem 2. The proof is by induction on ϕ.

• If ϕ is (t1 = t2) and t1, t2 have sort su, the claim follows from Lemma 13 by injectivity
of fu.

• If ϕ is P (t1, . . . , tn) where P is a predicate of type si1 ∗ . . . ∗ sin , we have:

JP (t1, . . . , tn)KIρ = (Jt1K
I
ρ , . . . , JtnKIρ) ∈ JP KI

(by definition of I∗ and fi injectivity) = (fi1(Jt1K
I
ρ), . . . , fin(JtnKIρ)) ∈ JP KI

∗

(by Lemma 13) = (Jt1
∗KI

∗

ρ∗ , . . . , Jtn
∗KI

∗

ρ∗) ∈ JP KI
∗

= JP (t1, . . . , tn)∗KI
∗

ρ∗

• The cases ϕ = ϕ1 ∧ ϕ2 and ϕ = ¬ϕ1 follow directly from the induction hypothesis.

• ϕ = ∃z::sv.ϕ0.

=⇒ Assume JϕKIρ is true. Then, there exists an element e of the sort sv such that

Jϕ0K
I
ρ[z 7→e] is true. By induction, Jϕ0

∗KI
∗

(ρ[z 7→e])∗
is true. Because (ρ[z 7→ e])∗ =

ρ∗[z 7→ fv(e)], we have J∃z.ϕ0
∗KI

∗

ρ∗ .

⇐= Assume Jϕ∗KI
∗

ρ∗ . Then, there exists e ∈ S of I∗ such that Jϕ0
∗KI

∗

ρ∗[z 7→e]. Let

ρ0 = ρ[z 7→ f−1
v (e)]. Then ρ0

∗ = ρ∗[z 7→ e]. By the induction hypothesis, Jϕ0K
I
ρ0

,

so J∃z::sv.ϕ0K
I
ρ .

5.10 Sort Information and Proof Length

Theorem 2 shows that omitting sort information is sound for disjoint sorts of the same
cardinality. Moreover, experimental results in Section 5.3 show that omitting sorts is often
beneficial compared to the standard relativization encoding of sorts using unary predi-
cates [177, Chapter 6, Section 8], even for SPASS [248] that has built-in support for sorts.
While there may be many factors that contribute to this empirical fact, we have observed
that in most cases omitting sort information decreases the size of the proofs found by the
prover.

We next sketch an argument that, in the simple settings without the paramodulation
rule [199], removing unary sort predicates only decreases the length of resolution proofs.
Let P1, . . . , Pn be unary sort predicates. We use the term sort literal to denote a literal of
the form Pi(t) or ¬Pi(t) for some 1 ≤ i ≤ n. The basic idea is that we can map clauses
with sort predicates into clauses without sort predicates, while mapping resolution proofs
into correct new proofs. We denote this mapping α. The mapping α removes sort literals

87

www.manaraa.com

and potentially some additional non-sort literals, and potentially performs generalization.
It therefore maps each clause into a stronger clause.

Consider mapping an application of a resolution step to clauses C1 and C2 with resolved
literals L1 and L2 to obtain a resolvent clause C. If L1 and L2 are not sort literals, we
can perform the analogous resolution step on the result of removing sort literals from C1

and C2. If, on the other hand, L1 and L2 are sort literals, then α(C1) and α(C2) do not
contain L1 or L2. We map such a proof step into a trivial proof step that simply selects as
α(C) one of the premises α(C1) or α(C2). For concreteness, let α(C) = α(C1). Because C
in this case contains an instance of each non-sort literal from C1, we have that α(C) is a
generalization of a subset of literals of C. The mapping α works in an analogous way for
the factoring step in a resolution proof, mapping it either to an analogous factoring step or
a trivial proof step.

The trivial proof steps are the reason why α removes not only sort literals but also non-
sort literals. Because α removes non-sort literals as well, even some proof steps involving
non-sort literals may become inapplicable. However, they can all be replaced by trivial
proof steps. The resulting proof tree has the same height and terminates at an empty
clause, because α maps each clause into a stronger one. Moreover, trivial proof steps can be
removed, potentially reducing the height of the tree. This shows that the shortest resolution
proof without guards is the same or shorter than the shortest resolution proof with guards.

5.11 Related Work

We are not aware of any other system capable of verifying such strong properties of opera-
tions on data structures that use arrays, recursive memory cells and integer keys and does
not require interactive theorem proving.

Verification systems. Boogie [29] is a sound verification system for the Spec# language,
which extends C# with specification constructs and introduces a particular methodology for
ensuring sound modular reasoning in the presence of aliasing and object-oriented features.
This methodology creates potentially more difficult frame conditions when analyzing proce-
dure calls compared to the ones created in Jahob, but the correctness of this methodology
seems easier to establish.

ESC/Java 2 [61] is a verification system for Java that uses JML [166] as a specification
language. It supports a large set of Java features and sacrifices soundness to achieve higher
usability for common verification tasks.

Boogie and ESC/Java2 use Nelson-Oppen style theorem provers [82, 23, 30], which have
potentially better support for arithmetic, but have more difficulties dealing with quan-
tified invariants. Jahob also supports a prototype SMT-LIB interface to Nelson-Oppen
style theorem provers. Our preliminary experience suggests that, for programs and proper-
ties described in this chapter, resolution-based theorem provers are no worse than current
Nelson-Oppen style theorem provers. Combining these two theorem proving approaches is
an active area of research [16, 213], and our system could also take advantage of these ideas,
potentially resulting in more robust support for arithmetic reasoning.

Specification variables are present in Boogie [169] and ESC/Java2 [60] under the name
model fields. We are not aware of any results on non-interactive verification that data
structures such as trees and hash tables meet their specifications expressed in terms of model
fields. The properties we are reporting on have previously been verified only interactively
[117, 124, 148, 267].

88

www.manaraa.com

The Krakatoa tool [178] can verify JML specifications of Java code. We are not aware
of its use to verify data structures in an automated way.

Abstract interpretation. Shape analyses [226, 167, 224] typically verify weaker proper-
ties than in our examples. The TVLA system [173] has been used to verify insertion sort
and bubble sort [174] as well as to verify implementations of insertion and removal oper-
ations on sets implemented as mutable lists and binary search trees [218, Page 35]. The
approach [218] uses manually supplied predicates and transfer functions and axioms for the
analysis, but is able to infer loop invariants in an imperative implementation of trees. Our
implementation of trees is functional and uses recursion, which simplifies the verification.
The analysis I describe in this dissertation does not infer loop invariants, but does not re-
quire transfer functions to be specified either. The only information that the data structure
user needs to trust is that procedure contracts correctly formalize the desired behavior of
data structure operations; if the developer incorrectly specifies an invariant or an update
to a specification variable, the system will detect an error.

Translation from higher-order to first-order logic. In [126, 188, 187] the authors
also address the process of proving higher-order formulas using first-order theorem provers.
Our work differs in that we do not aim to provide automation to a general-purpose higher-
order interactive theorem prover. Therefore, we were able to avoid using general encoding
of lambda calculus into first-order logic and we believe that this made our translation more
effective.

The authors in [126, 187] also observe that encoding the full type information slows
down the proof process. The authors therefore omit type information and then check the
resulting proofs for soundness. A similar approach was adopted to encoding multi-sorted
logic in the Athena theorem proving framework [15]. In contrast, we were able to prove that
omitting sort information preserves soundness and completeness when sorts are disjoint and
have the same cardinality.

The filtering of assumptions also appears in [186]. Our technique is similar but simpler
and works before transformation to clause normal form. Our results confirm the usefulness
of assumption filtering in the context of problems arising in data structure verification.

A quantifier-free language that contains set operations can be translated into the uni-
versal fragment of first-order logic [160] (see also [68]). In our experience so far we found
no need to limit the precision of the translation by restricting ourselves to the universal
fragment.

Type systems. Type systems have been used to verify algebraic data types [76], array
bounds [257], and mutable structures [269], usually enforcing weaker properties than in our
case. Recently, researchers have developed a promising approach [198] based on separa-
tion logic [130] that can verify shape and content properties of imperative recursive data
structures (although it has not been applied to hash tables yet). Our approach uses stan-
dard higher-order and first-order logic and seems conceptually simpler, but generates proof
obligations that have potentially more quantifiers and case analyses.

Constraint solving and testing. In [80] the authors use a constraint solver based on
translation to propositional logic to identify all errors within a given scope in real-world
implementations of linked lists. Another approach for finding bugs is exhaustive testing
by generating tests that satisfy given preconditions [179, 140]. These techniques are very
effective at finding bugs, but do not guarantee the absence of errors.

89

www.manaraa.com

5.12 Conclusions

We presented a technique for verifying complex data structure properties using resolution-
based first-order theorem provers. We used a simple translation that expands higher-order
definitions and translates function applications to applications of uninterpreted function
symbols, without encoding set theory or lambda calculus in first-order logic. We have
observed that omitting sort information in our translation speeds up the theorem proving
process. This motivated us to prove that omitting such sort information is sound for disjoint
sorts of same cardinality, even in the presence of an overloaded equality operator. We have
also confirmed the usefulness of filtering to reduce the size of formulas used as an input to
the theorem prover.

Using these techniques we were able to prove strong properties for an implementation of
a hash table, an instantiable mutable list, for a functional implementation of ordered binary
search tree, and for a functional association list. We also verified a simple library system
that instantiates two sets and a relation and maintains constraints on them in the presence
of changes to the sets and relation. Our system proves that operations act as expected on
the abstract content of the data structure (that is, they establish their postcondition such
as insertion or removal of tuples from a relation), that they preserve non-trivial internal
representation invariants, such as sortedness of a tree and structural invariants of a hash
table, and that they do not cause run-time errors such as null dereference or array out of
bounds access.

90

www.manaraa.com

Chapter 6

Field Constraints and Monadic

Second-Order Logic for

Reachability

This chapter studies a technique for proving formulas that arise from verification of linked
imperative data structures and is based on [253, 252]. I present the examples in this chapter
using Jahob notation, although we originally verified them using the Hob system [152, 165]
before incorporating field constraint analysis into Jahob. Field constraints analysis is used in
the Bohne shape analysis plugin developed by Thomas Wies [254, 211, 251]. I omit detailed
discussion of Bohne; loop invariant inference is outside the scope of this dissertation.

The verification of imperative linked data structures is an active area of research [191,
Chapter 4], [106, 226, 190, 21, 72, 185, 101, 167]. The starting point for our technique is
the decidability of monadic second-order logic of trees [235]. Among the shape analysis
approaches, techniques based on monadic second-order logic of trees [190, 144, 134] are
interesting for several reasons. First, the correctness of such analysis is easier to establish
than for approaches based on ad hoc representations; the use of a decidable logic separates
the problem of generating constraints that imply program properties from the problem
of solving these constraints. Next, such analyses can be used in the context of assume-
guarantee reasoning because the logic provides a language for specifying the behaviors of
code fragments. Finally, the decidability of the logic leads to completeness properties for
these analyses, eliminating false alarms and making the analyses easier to interact with.
We were able to confirm these observations in the context of Hob system [152] for ana-
lyzing data structure consistency, where we have integrated one such tool [190] with other
analyses, allowing us to use shape analysis in the context of larger programs: in particular,
Hob enabled us to leverage the power of shape analysis, while avoiding the associated per-
formance penalty, by applying shape analysis only to those parts of the program where its
extreme precision is necessary.

Our experience with such analyses has also taught us that some of the techniques that
make these analyses predictable also make them inapplicable to many useful data structures.
Among the most striking examples is the restriction on pointer fields in the Pointer Assertion
Logic Engine [190]. This restriction states that all fields of the data structure that are not
part of the data structure’s tree backbone must be functionally determined by the backbone;
that is, such fields must be specified by a formula that uniquely determines where they point

91

www.manaraa.com

to. Formally, we have
∀x y. f(x)=y ↔ F (x, y) (6.1)

where f is a function representing the field, and F is a formula mentioning only backbone
fields. The restriction that F is functional means that, although data structures such
as doubly linked lists with backward pointers can be verified, many other data structures
remain beyond the scope of the analysis. This includes data structures where the exact value
of pointer fields depends on the history of data structure operations, and data structures
that use randomness to achieve good average-case performance, such as skip lists [214]. In
such cases, the invariant on the pointer field does not uniquely determine where the field
points to, but merely gives a constraint on the field, of the form

∀x y. f(x)=y → F (x, y) (6.2)

This constraint is equivalent to ∀x. F (x, f(x)), which states that the function f is a solution
of a given binary predicate. The motivation for this chapter is to find a technique that
supports reasoning about constraints of this, more general, form. In a search for existing
approaches, we have considered structure simulation [129, 127], which, intuitively, allows
richer logics to be embedded into existing logics that are known to be decidable, and of
which [190] can be viewed as a specific instance. Unfortunately, even the general structure
simulation requires definitions of the form ∀x y. r(x, y) ↔ F (x, y) where r(x, y) is the
relation being simulated. When the relation r(x, y) is a function, which is the case with most
reference fields in programming languages, structure simulation implies the same restriction
on the functionality of the defining relation. To handle the general case, an alternative
approach therefore appears to be necessary.

Field constraint analysis. This chapter presents field constraint analysis, our approach
for analyzing fields with general constraints of the form (6.2). Field constraint analysis
is a proper generalization of the existing approach and reduces to it when the constraint
formula F is functional. It is based on approximating the occurrences of f with F , tak-
ing into account the polarity of f , and is always sound. It is expressive enough to verify
constraints on pointers in data structures such as two-level skip lists. The applicability
of our field constraint analysis to non-deterministic field constraints is important because
many complex properties have useful non-deterministic approximations. Yet despite this
fundamentally approximate nature of field constraints, we were able to prove its complete-
ness for some important special cases. Field constraint analysis naturally combines with
structure simulation, as well as with a symbolic approach to shape analysis [251, 211]. Our
presentation and current implementation are in the context of the monadic second-order
logic (MSOL) of trees [143], but our results extend to other logics. We therefore view field
constraint analysis as a useful component of shape analysis approaches that makes shape
analysis applicable to a wider range of data structures.

Contributions. This chapter makes the following contributions:

• We introduce an algorithm (Figure 6-7) that uses field constraints to eliminate de-
rived fields from verification conditions.

• We prove that the algorithm is both sound (Theorem 17) and, in certain cases,
complete. The completeness applies not only to deterministic fields (Theorem 19),
but also to the preservation of field constraints themselves over loop-free code (The-
orem 25). The last result implies a complete technique for checking that field con-

92

www.manaraa.com

straints hold, if the programmer adheres to a discipline of maintaining them e.g. at
the beginning of each loop.

6.1 Examples

We next explain our field constraint analysis with a set of examples. The doubly-linked list
example shows that our analysis handles, as a special case, the ubiquitous back pointers
of data structures. The skip list example shows how field constraint analysis handles non-
deterministic field constraints on derived fields, and how it can infer loop invariants. Finally,
the students example illustrates inter-data-structure constraints, which are simple but useful
for high-level application properties.

6.1.1 Doubly-Linked List with an Iterator

This section presents a doubly-linked list with a built-in iterator. It illustrates the usefulness
of field constraints for specifying pointers that form doubly-linked structures.

Our doubly-linked list implementation is a global data structure with operations add

and remove that insert and remove elements from the list, as well as operations initIter,
nextIter, and lastIter for manipulating the iterator built into the list. We have verified
all these operations using our system; we here present only the remove operation. We im-
plement the doubly-linked list using two fields of the Node class, next and prev, the private
first variable of the doubly-linked list, and the private current variable that indicates
the position of the iterator in the list. The contract for the remove operation in Figure 6-1
specifies the behavior of the operation remove using two sets: content contains the set
of elements in the list, whereas iterRest specifies the set of elements that remain to be
iterated over. These two sets abstractly characterize the behavior of operations, allowing
the clients to soundly reason about the hidden implementation of the list. Such reasoning
within clients is sound because our analysis verifies that the implementation conforms to
the specification, using the definitions of sets content and iterRest in Figure 6-1. The
definitions of sets are expressed in our higher-order logic subset and contain reachability
expressions. The shorthand reach denotes binary reachability relation defined as the re-
flexive transitive closure of the Node.next field and is denoted using the rtrancl symbol
of our logic. The class then defines content as the set of all objects reachable from root

and defines iterRest as the set of all objects reachable from current.
The definitions of content and iterRest are not visible to clients of DLLIter class,

allowing changes to the implementation without necessarily requiring changes to clients.
What is visible to clients are the values of content and iterRest variables, so it is desirable
for the class to specify a public class invariant content ⊆ iterRest that relates them.

The DLLIter class also contains private representation invariants; our system ensures
that these invariants are maintained by each operation in the module. The first invariant
states that nodes outside the data structure content have have null as the value of the next
field. Our system can prove that the entire program preserves such invariant because the
fields of the Node class are marked as belonging to DLLIter class, which makes these fields
inaccessible to classes other than DLLIter (although the other classes can pass around Node

objects).
The second invariant, tree[Node.next], indicates that next fields form a tree. Jahob

uses such tree invariants to identify the backbone fields of the data structure. In this case,
next as the sole kind of the backbone field, so the tree reduces to a list, which enables Jahob

93

www.manaraa.com

to speed up the verification by using the string mode of the MONA tool [143] as opposed
to the more general tree mode.

Jahob recognizes the form of the final invariant as a field constraint on the prev field.
The field constraint indicates to Jahob that prev is a derived field that is the inverse of the
next field.

Jahob verifies that the remove procedure implementation in Figure 6-1 conforms to its
contract as follows. Jahob expands the modifies clause into a frame condition, which it
conjoins with the ensures clause. Next, Jahob conjoins the public and private invariants to
the requires and ensures clauses, converts the program into a guarded command language,
and generates verification condition taking into account the definitions of variables content
and iterRest.

To decide the resulting verification condition, Jahob analyzes the verification condi-
tion and recognizes the assumptions of the form tree[f1, . . . , fn] as well as of the form
ALL x y. f x = y −→ F (x, y). The first form of the assumption determines the backbone
fields of the data structure, the second form of an assumption determines the derived fields
and their constraint. In our case, Jahob exploits the fact that next is a backbone field and
prev is a field given by a field constraint to reduce the verification condition to one express-
ible using only the next field. (This elimination is given by the algorithm in Figure 6-7.)
Because next fields form a tree, Jahob can decide the verification condition using monadic
second-order logic on trees [143]. To ensure the soundness of this approach, Jahob also
verifies that the structure remains a tree after each operation.

We note that our first implementation of the doubly-linked list with an iterator was
verified using a Hob plugin [152] that relies on Pointer Assertion Logic Engine tool [190].
While verifying the initial version of the list module, we discovered an error in remove:
the first three lines of remove procedure implementation in Figure 6-1 were not present,
resulting in a violation of the specification of remove in the special case when the element
being removed is the next element to iterate over. What distinguishes our approach from
the previous Hob analysis based on PALE is the ability to handle the cases where the field
constraints are non-deterministic. We illustrate such cases in the examples that follow.

Compared to our deployment of field constraint analysis in Hob, the deployment in
Jahob also has the advantage of being applicable to procedures that require a combination
of reasoning based on decision procedures other than monadic second-order logic over trees.
We remark that Thomas Wies integrated field constraint analysis with symbolic shape
analysis [251] that infers loop invariants for linked data structures; we omit the discussion
of loop invariant inference from this thesis and direct the reader to [252, 253, 254].

6.1.2 Skip List

We next present the analysis of a two-level skip list. Skip lists [214] support logarithmic
average-time access to elements by augmenting a sorted linked list with sublists that skip
over some of the elements in the list. The two-level skip list is a simplified implementation
of a skip list, which has only two levels: the list containing all elements, and a sublist of this
list. Figure 6-3 presents an example two-level skip list. Our implementation uses the next

field to represent the main list, which forms the backbone of the data structure, and uses the
derived nextSub field to represent a sublist of the main list. We focus on the add procedure,
which inserts an element into an appropriate position in the skip list. The implementation
of add first searches through nextSub links to get an estimate of the position of the entry,
then finds the entry by searching through next links, and inserts the element into the main

94

www.manaraa.com

class Node {

public /*: claimedby DLLIter */ Node next;

public /*: claimedby DLLIter */ Node prev;

}

class DLLIter {

private static Node first, current;

/*:

public static specvar content :: objset;

public static specvar iterRest :: objset;

private static specvar reach :: "obj => obj => bool";

vardefs "reach == (% a b. (a,b) : rtrancl {(x, y). Node.next x = y})";

private vardefs "content == {x. x ~= null & reach first x}";

private vardefs "iterRest == {x. x ~= null & reach current x}";

public invariant "iterRest \<subseteq> content";

invariant "ALL n. n ~: content --> n..Node.next = null";

invariant "tree [Node.next]";

invariant "ALL x y. Node.prev x = y -->

(y ~= null --> Node.next y = x) &

(y = null & x ~= null --> (ALL z. Node.next z ~= x))";

*/

public static void remove(Node n)

/*: requires "n : content"

modifies content, iterRest

ensures "content = old content - {n} &

iterRest = old iterRest - {n}"

*/

{

if (n==current) {

current = current.next;

}

if (n==first) {

first = first.next;

} else {

n.prev.next = n.next;

}

if (n.next != null) {

n.next.prev = n.prev;

}

n.next = null; n.prev = null;

}

}

Figure 6-1: Iterable list implementation and specification

95

www.manaraa.com

next-linked list. With certain probability, the procedure also inserts the element into the
nextSub list. The postcondition of add indicates that add always inserts the element into
the content set of elements, which denotes the elements stored in the list. The class defines
content as the set of nodes reachable from root along the next field.

The Skiplist class defines several class invariants. The first invariant,
tree[Node.next], defines next as a tree backbone field. The second invariant is a field con-
straint on nextSub. The field constraint indicates that, for non-null objects, the nextSub

field points from x to an object y that is reachable along the next field from the successor
of x. Note that the field constraint on nextSub is non-deterministic, because it only states
there exists a path of length at least one from x to y, without indicating where exactly in
the list nextSub points. Indeed, the simplicity of the skip list implementation stems from
the fact that the position of nextSub is not uniquely given by next; it depends not only on
the history of invocations, but also on the random number generator used to decide when to
introduce new nextSub links. The ability to support such non-deterministic constraints is
what distinguishes our approach from approaches that can only handle deterministic fields.

Our analysis successfully verifies that add preserves all invariants, including the non-
deterministic field constraint on nextSub. While doing so, the analysis takes advantage of
these invariants as well, as is usual in assume/guarantee reasoning. In this example, the
analysis also infers the loop invariants in add, using symbolic shape analysis [251, 211, 254].

6.1.3 Students and Schools

Our next example illustrates the power of non-deterministic field constraints. This example
contains two linked lists: one containing students and one containing schools. Figure 6-4
shows an example instance of this data structure. Each Elem object may represent either a
student or a school. Both students and schools use the next backbone pointer to indicate
the next student or school in the relevant linked list. In addition, students have an attends

field referencing the school which they attend (the attends field is null for school objects).

Figures 6-5 shows the data structure declaration for this example and presents the
addStudent operation on the data structure. The specification of the data structure is
given in terms of two sets: ST denotes the students in the data structure and SC denotes
the schools. The representation invariants formalize the shape of the data structure: the
public invariants ensure that students and schools are disjoint sets that do not contain null,
whereas the three private invariants specify more detailed properties of next and attends

fields. The tree invariant indicates that the data structure contains a union of two lists.
The subsequent invariant indicates that the elements outside the list of students and schools
have no incoming or outgoing references.

The final invariant is a field constraint on the attends field: it indicates that an attends

field points from the students in the ST set to one of the schools in SC set. Note that
the field constraint is also non-deterministic in this example: the target of the attends

field is not determined by the next fields; instead, attends field carries important non-
redundant information about the data structure. Nevertheless, the attends field is not
entirely unconstrained: an attends field pointing from a student to another student would
indicate a broken data structure.

Our analysis successfully verifies that the addStudent operation preserves the data
structure invariants and correctly inserts a student into the list of students. To preserve
the field constraint x:ST --> y:SC on the attends field, the analysis uses the precondition
of addStudent to conclude that the supplied school is already in the list of schools. Veri-

96

www.manaraa.com

root
next next next next next

nextSub
nextSub

Figure 6-2: An instance of a two-level skip list

class Skiplist {

private static Node root;

/*:

public static specvar content :: objset;

private static specvar reach :: "obj => obj => bool";

vardefs "reach == (% a b. rtrancl_pt (% x y. x..Node.next = y) a b)";

private vardefs "content == {x. reach root x & x ~= null}";

invariant "tree [Node.next]";

invariant "ALL x y. Node.nextSub x = y --> ((x = null --> y = null)

& (x ~= null --> reach (Node.next x) y))";

invariant "ALL x. x ~= null & ~(reach root x) -->

Node.next x = null &

(ALL y. y ~= null --> Node.next y ~= x)";

*/

public static void add(Node e)

/*: requires "e ~= null & e ~: content"

modifies content

ensures "content = old content Un {e}" */

{

if (root==null) {

root = e;

} else {

int v = e.v;

Node sprev = root, scurrent = root.nextSub;

while ((scurrent != null) && (scurrent.v < v)) {

sprev = scurrent; scurrent = scurrent.nextSub;

}

Node prev = sprev, current = sprev.next;

while ((current != scurrent) && (current.v < v)) {

prev = current; current = current.next;

}

e.next = current; prev.next = e;

if (randomBoolean()) {

sprev.nextSub = e; e.nextSub = scurrent;

} else {

e.nextSub = null;

}

}

}

}

Figure 6-3: Two-level skip-list with add operation

97

www.manaraa.com

students

n
ex

t
n
ex

t
n
ex

t

schools

n
ex

t
n
ex

t

attends

attends

atten
d
s

attends

Figure 6-4: Data structure instance for students and schools example

fying such non-deterministic constraints is beyond the power of previous analyses based on
monadic second-order logic over trees, which required the identity of the school pointed to
by the student to be functionally determined by the identity of the student. The example
therefore illustrates how our analysis eliminates a key restriction of previous approaches.

6.2 Field Constraint Analysis

This section presents the field constraint analysis algorithm and proves its soundness as well
as, for some important cases, completeness.

We consider a logic L over a signature Σ where Σ consists of unary function symbols f ∈
Fld corresponding to fields in data structures and constant symbols c ∈ Var corresponding
to program variables. We use monadic second-order logic (MSOL) over trees as our working
example, but in general we only require L to support conjunction, implication and equality
reasoning.

A Σ-structure S is a first-order interpretation of symbols in Σ. For a formula F in L,
we denote by Fields(F) ⊆ Σ the set of all fields occurring in F .

We assume that L is decidable over some set of well-formed structures and we assume
that this set of structures is expressible by a formula I in L. We call I the simulation
invariant [129]. For simplicity, we consider the simulation itself to be given by the restriction
of a structure to the fields in Fields(I), i.e. we assume that there exists a decision procedure
for checking validity of implications of the form I → F where F is a formula such that
Fields(F) ⊆ Fields(I). In our running example, MSOL, the simulation invariant I states
that the fields in Fields(I) span a forest.

We call a field f ∈ Fields(I) a backbone field, and call a field f ∈ Fld \Fields(I) a derived
field. We refer to the decision procedure for formulas with fields in Fields(I) over the set of
structures defined by the simulation invariant I as the underlying decision procedure. Field
constraint analysis enables the use of the underlying decision procedure to reason about
non-deterministically constrained derived fields. We state invariants on the derived fields
using field constraints.

Definition 14 (Field constraints on derived fields) A field constraint Df for a simu-

98

www.manaraa.com

class Elem {

public /*: claimedby Students */ Elem attends;

public /*: claimedby Students */ Elem next;

}

class Students {

private static Elem students;

private static Elem schools;

/*:

private static specvar reach :: "obj => obj => bool";

vardefs "reach == (% a b. rtrancl_pt (% x y. x..Elem.next = y) a b)";

public static specvar ST :: objset;

vardefs "ST == {x. x ~= null & reach students x}";

public static specvar SC :: objset;

vardefs "SC == {x. x ~= null & reach schools x}";

public invariant "null ~: (ST Un SC)";

public invariant "ST Int SC = {}";

invariant "tree [Elem.next]";

invariant "ALL x. x ~: (ST Un SC Un {null}) -->

(ALL y. y ~= null --> y..Elem.next~=x) &

x..Elem.next=null";

invariant "ALL x y. Elem.attends x = y -->

(x : ST --> y : SC) &

(x ~: ST --> y = null)";

*/

public static void addStudent(Elem st, Elem sc)

/*:

requires "st ~: (ST Un SC Un {null}) & sc : SC"

modifies ST

ensures "ST = old ST Un {st}"

*/

{

st.attends = sc;

st.next = students;

students = st;

}

}

Figure 6-5: Students example

99

www.manaraa.com

lation invariant I and a derived field f is a formula of the form

Df ≡ ∀x y. f(x) = y → FCf (x, y)

where FCf is a formula with two free variables such that (1) Fields(FCf) ⊆ Fields(I), and
(2) FCf is total with respect to I, i.e. I |= ∀x. ∃ y .FCf (x, y).

We call the constraint Df deterministic if FCf is deterministic with respect to I, i.e.

I |= ∀x y z. FCf (x, y)∧ FCf (x, z) → y = z .

We write D for the conjunction of Df for all derived fields f .

Note that Definition 14 covers arbitrary constraints on a field, because Df is equivalent to
∀x. FCf (x, f(x)).

The totality condition (2) is not required for the soundness of our approach, only for
its completeness, and rules out invariants equivalent to “false”. The condition (2) does not
involve derived fields and can therefore be checked automatically using a single call to the
underlying decision procedure.

Our goal is to check validity of formulas of the form I ∧D → G, where G is a formula
with possible occurrences of derived fields. If G does not contain any derived fields then
there is nothing to do, because in that case checking validity immediately reduces to the
validity problem without field constraints, as given by the following lemma.

Lemma 15 Let G be a formula such that Fields(G) ⊆ Fields(I).
Then I |= G iff I ∧D |= G.

Proof. The left-to-right direction follows immediately. For the right-to-left direction assume
that I ∧D → G is valid. Let S be a structure such that S |= I. By totality of all field
constraints in D there exists a structure S′ such that S′ |= I ∧D and S′ differs from S only
in the interpretation of derived fields. Since Fields(G) ⊆ Fields(I) and I contains no derived
fields we have that S′ |= G implies S |= G.

To check validity of I ∧D → G, we therefore proceed as follows. We first obtain a
formula G′ from G by eliminating all occurrences of derived fields in G. Next, we check
validity of G′ with respect to I. In the case of a derived field f that is defined by a
deterministic field constraint, occurrences of f in G can be eliminated by flattening the
formula and substituting each term f(x) = y by FCf (x, y). However, in the general case of
non-deterministic field constraints such a substitution is only sound for negative occurrences
of derived fields, since the field constraint gives an over-approximation of the derived field.
Therefore, a more sophisticated elimination algorithm is needed.

Eliminating derived fields. Figure 6-7 presents our algorithm Elim for elimination of
derived fields. Consider a derived field f and let F ≡ FCf . The basic idea of Elim is that
we can replace an occurrence f(x) in a formula G(f(x)) by a new variable y that satisfies
F (x, y), yielding a stronger formula ∀y. F (x, y) → G(y). As an improvement, if G contains
two occurrences f(x1) and f(x2), and if x1 and x2 evaluate to the same value, then the
algorithm imposes the constraint that the values y1 and y2 replacing f(x1) and f(x2) are
equal.

Define function skolem as follows: 1) skolem(∀x.G) = G; 2) skolem(G1 ∧ G2) =
skolem(G1) ∧ skolem(G2); and 3) skolem(G) = G if G is not of the form ∀x.G or G1 ∧G2.

100

www.manaraa.com

DnextSub ≡ ∀v1 v2. nextSub(v1) = v2 → next+(v1, v2)

G ≡ wlp((e.nextSub := root .nextSub ; e.next := root),DnextSub)

≡ ∀v1 v2. nextSub[e := nextSub(root)](v1) = v2 → (next [e := root])+(v1, v2)

G′ ≡ skolem(Elim(G)) ≡
x1 = root → next+(x1, y1) →

x2 = v1 → next+[e := y1](x2, y2) ∧ (x2 = x1 → y2 = y1) →
y2 = v2 → (next [e := root])+(v1, v2)

Figure 6-6: Elimination of derived fields from a pretty nice formula. The notation next+

denotes the irreflexive transitive closure of predicate next(x) = y.

Example 16 The example in Figure 6-6 demonstrates the elimination of derived fields
using the Elim algorithm. The example in Figure 6-6 is inspired by the skip list module
from Section 6.1. The formula G expresses the preservation of field constraint DnextSub for
updates of fields next and nextSub that insert e in front of root . This formula is valid
under the assumption that ∀x. next(x) 6= e holds. Elim first replaces the inner occurrence
nextSub(root) and then the outer occurrence of nextSub. Theorem 25 implies that the
resulting formula skolem(Elim(G)) is valid under the same assumption as the original formula
G.

�

The Elim algorithm uses the set K of triples (x, f, y) to record previously assigned values
for f(x). Elim runs in time O(n2) where n is the size of the formula and produces an at
most quadratically larger formula. Elim accepts formulas in negation normal form, where
all negation signs apply to atomic formulas (see Figure 4-8 for rules of transformation into
negation normal form). We generally assume that each quantifier Qz binds a variable z
that is distinct from other bound variables and distinct from the free variables of the entire
formula. We present Elim as acting on potentially quantified formulas, but Elim is also
useful for checking validity of quantifier-free formulas because it only introduces universal
quantifiers which can be replaced by Skolem constants. The algorithm is also applicable to
multisorted logics, and, by treating sets of elements as a new sort, to MSOL. To make the
discussion simpler, we consider a deterministic version of Elim where the non-deterministic
choices of variables and terms are resolved by some arbitrary, but fixed, linear ordering on
terms. We write Elim(G) to denote the result of applying Elim to a formula G.

The correctness of Elim is given by Theorem 17. The proof of Theorem 17 relies on the
monotonicity of logical operations and quantifiers in negation normal form of a formula.

Theorem 17 (Soundness) The algorithm Elim is sound: if I∧D |= Elim(G), then I∧D |=
G. What is more, I ∧D ∧ Elim(G) |= G.

Proof. By induction on the first argument G of elim we prove that, for all finite K,

I ∧D ∧ elim(G,K) ∧
∧

(xi,fi,yi)∈K

FCfi
(xi, yi) |= G

101

www.manaraa.com

S − a term or a formula
Terms(S) − terms occurring in S

FV(S) − variables free in S
Ground(S) = {t ∈ Terms(S). FV(t) ⊆ FV(S)}
Derived(S) − derived function symbols in S

proc Elim(G) = elim(G, ∅)
proc elim(G : formula in negation normal form;

K : set of (variable,field,variable) triples):
let T = {f(t) ∈ Ground(G). f ∈ Derived(G) ∧ Derived(t) = ∅}
if T 6= ∅ do

choose f(t) ∈ T
choose x, y fresh first-order variables
let F = FCf

let F1 = F (x, y) ∧
∧

(xi,f,yi)∈K(x = xi → y = yi)

let G1 = G[f(t) := y]
return ∀x. x = t → ∀y. (F1 → elim(G1,K ∪ {(x, f, y)}))

else case G of
| Qx. G1 where Q ∈ {∀,∃}:

return Qx. elim(G1,K)
| G1 op G2 where op ∈ {∧,∨}:

return elim(G1,K) op elim(G2,K)
| else return G

Figure 6-7: Derived-field elimination algorithm

102

www.manaraa.com

For K = ∅ we obtain I ∧ D ∧ Elim(G) |= G, as desired. In the inductive proof, the cases
when T = ∅ are straightforward. The case f(t) ∈ T uses the fact that if M |= G[f(t) := y]
and M |= f(t) = y, then M |= G.

Completeness. We now analyze the classes of formulas G for which Elim is complete.

Definition 18 We say that Elim is complete for (D,G) iff
I ∧D |= G implies I ∧D |= Elim(G).

Note that we cannot hope to achieve completeness for arbitrary constraints D. Indeed, if we
let D ≡ true, then D imposes no constraint whatsoever on the derived fields, and reasoning
about the derived fields becomes reasoning about uninterpreted function symbols, that is,
reasoning in unconstrained predicate logic. Such reasoning is undecidable not only for
monadic second-order logic, but also for much weaker fragments of first-order logic [113].
Despite these general observations, we have identified two cases important in practice for
which Elim is complete (Theorem 19 and Theorem 25).

Theorem 19 expresses the fact that, in the case where all field constraints are deter-
ministic, Elim is complete (and then it reduces to previous approaches [129, 190] that are
restricted to the deterministic case). The proof of Theorem 19 uses the assumption that F
is total and functional to conclude ∀x y. F (x, y) → f(x) = y, and then uses an inductive
argument similar to the proof of Theorem 17.

Theorem 19 (Completeness for deterministic fields) Algorithm Elim is complete for
(D,G) when each field constraint in D is deterministic.
What is more, I ∧D ∧G |= Elim(G).

Proof. Consider a field constraint F ≡ FCf and let x̄ and ȳ be such that F (x̄, ȳ). Because
F (x̄, f(x̄)) and F is deterministic by assumption, we have ȳ = f(x̄). It follows that I ∧D∧
F (x, y) |= f(x) = y. We then prove by induction on the argument G of elim that, for all
finite K,

I ∧D ∧G ∧
∧

(xi,fi,yi)∈K

fi(xi) = yi |= elim(G,K)

For K = ∅ we obtain I ∧ D ∧ G |= Elim(G), as desired. The inductive proof is similar
to the proof of Theorem 17. In the case f(t) ∈ T , we consider a model M such that
M |= I ∧ D ∧ G ∧

∧

(xi,fi,yi)∈K fi(xi) = yi. Consider any x̄, ȳ such that: 1) M |= x = t,
2) M |= F (x, y) and 3) M |= x = xi → y = yi for all (xi, f, yi) ∈ K. To show
M |= elim(G1,K ∪ {(x, f, y)}), we consider a modified model M1 = M [f(x̄) := ȳ] which
is like M except that the interpretation of f at x̄ is ȳ. By M |= F (x, y) we conclude
M1 |= I ∧ D. By M |= x = xi → y = yi, we conclude M1 |=

∧

(xi,fi,yi)∈K fi(xi) = yi as
well. Because I∧D∧F (x, y) |= f(x) = y, we conclude M1 |= f(x) = y. Because M |= x = t
and Derived(t) = ∅, we have M1 |= x = t so from M |= G we conclude M1 |= G1 where
G1 = G[f(t) := y]. By induction hypothesis we then conclude M1 |= elim(G1,K∪{(x, f, y)}.
Then also M |= elim(G1,K ∪ {(x, f, y)} because the result of elim does not contain f .
Because x̄, ȳ were arbitrary, we conclude M |= elim(G,K).

We next turn to completeness in the cases that admit non-determinism of derived fields.
Theorem 25 states that our algorithm is complete for derived fields introduced by the
weakest precondition operator to a class of postconditions that includes field constraints.
This result is very important in practice. For example, when we used a previous version
of an elimination algorithm that was incomplete, we were not able to verify the skip list

103

www.manaraa.com

example in Section 6.1.2. To formalize our completeness result, we introduce two classes of
well-behaved formulas: nice formulas and pretty nice formulas.

Definition 20 (Nice formulas) A formula G is a nice formula if each occurrence of each
derived field f in G is of the form f(t), where t ∈ Ground(G).

Nice formulas generalize the notion of quantifier-free formulas by disallowing quantifiers
only for variables that are used as arguments to derived fields. Lemma 21 shows that the
elimination of derived fields from nice formulas is complete. The intuition behind Lemma 21
is that if I∧D |= G, then for the choice of yi such that F (xi, yi) we can find an interpretation
of the function symbol f such that f(xi) = yi, and I ∧ D holds, so G holds as well, and
Elim(G) evaluates to the same truth value as G.

Lemma 21 Elim is complete for (D,G) if G is a nice formula.

Proof. Let G be a nice formula. To show that I ∧ D |= G implies I ∧ D |= Elim(G),
let I ∧ D |= G and let f1(t1), . . . , fn(tn) be the occurrences of derived fields in G. By
assumption, t1, . . . , tn ∈ Ground(G) and Elim(G) is of the form

∀x1 y1. x1 = t1 → (F 1
1 ∧

∀x2 y2. x2 = t′2 → (F 2
1 ∧

. . .
∀xn, yn. xn = t′n → (Fn

1 ∧G0) . . .))

where t′i differs from ti in that some of its subterms may be replaced by variables yj for
j < i. Here F i = FCfi

and

F i
1 = F i(xi, yi) ∧

∧

j<i,fj=fi

(xi = xj → yi = yj).

Consider a model M of I ∧D, we show M is a model for Elim(G). Consider any assignment
x̄i, ȳi to variables xi, yi for 1 ≤ i ≤ n. If any of the conditions xi = ti or F i

1 are false for
this assignment, then Elim(G) is true because these conditions are on the left-hand side of
an implication. Otherwise, conditions F i

1(xi, yi) hold, so by definition of F i
1, if x̄i = x̄j ,

then ȳi = ȳj. Therefore, for each distinct function symbol fj there exist a function f̄j such
that f̄(xi) = ȳi for fj = fi. Because F i(xi, yi) holds and each FCf is total, we can define
such f̄j so that D holds. Let M ′ = M [fj 7→ f̄j]j be a model that differs from M only in
that fj are interpreted as f̄j. Then M ′ |= I because I does not mention derived fields and
M ′ |= D by construction. We therefore conclude M ′ |= G. If t̄i is the value of ti in M ′, then
x̄i = t̄i because M |= xi = ti and Derived(ti) = ∅. Using this fact, as well as f̄j(x̄i) = ȳi,
by induction on subformulas of G0 we conclude that G0 has the same truth value as G in
M ′, so M ′ |= G0. Because G0 does not contain derived function symbols, M |= G0 as well.
Because x̄i and ȳi were arbitrary, we conclude M |= Elim(G). This completes the proof.

Remark. Note that it is not the case that a stronger statement I∧D∧G |= Elim(G) holds.
For example, take D ≡ true, and G ≡ f(a) = b. Then Elim(G) is equivalent to ∀y.y = b and
it is not the case that I ∧ f(a) = b |= ∀y.y = b.

Definition 22 (Pretty nice formulas) The set of pretty nice formulas is defined induc-
tively by 1) a nice formula is pretty nice; 2) if G1 and G2 are pretty nice, then G1 ∧G2 is
pretty nice; 3) if G is pretty nice and x is a first-order variable, then ∀x.G is pretty nice.

104

www.manaraa.com

Pretty nice formulas therefore additionally admit universal quantification over arguments
of derived fields.

Lemma 23 The following observations hold:

1. each field constraint Df is a pretty nice formula;

2. if G is a pretty nice formula, then skolem(G) is a nice formula and
H |= G iff H |= skolem(G) for any set of sentences H.

The next Lemma 24 shows that pretty nice formulas are closed under wlp; the lemma follows
from the conjunctivity of the weakest precondition operator.

Lemma 24 Let c be a guarded command of the language in Figure 3-3. If G is a nice
formula, then wlp(c,G) is a nice formula. If G is a pretty nice formula, then wlp(c,G) is
equivalent to a pretty nice formula.

Proof. Using the conjunctivity properties of wlp:

wlp(c,∀x.G) ↔ ∀x.wlp(c,G)

and
wlp(c,G1 ∧G2) ↔ wlp(c,G1) ∧ wlp(c,G2)

the problem reduces to proving the lemma for the case of nice formulas.
Since we defined wlp recursively on the structure of commands, we prove the statement

by structural induction on command c. For c = (e1 := e2) and c = havoc(x) we have that
wlp replaces ground terms by ground terms, i.e. in particular all introduced occurrences
of derived fields are ground. For c = assume(F) and c = assert(F) every occurrence of a
derived field introduced by wlp comes from F . Since F is quantifier free, all such occur-
rences are ground. The remaining cases follow from the induction hypothesis for component
commands.

Lemmas 24, 23, 21, and 15 imply our main theorem, Theorem 25. Theorem 25 implies
that Elim is a complete technique for checking preservation (over straight-line code) of field
constraints, even if they are conjoined with additional pretty nice formulas. Elimination
is also complete for data structure operations with loops as long as the necessary loop
invariants are pretty nice.

Theorem 25 (Completeness for preservation of field constraints) Let G be a
pretty nice formula, D a conjunction of field constraints, and c a guarded command
(Figure 3-3). Then

I ∧D |= wlp(c,G ∧D) iff I |= Elim(wlp(c, skolem(G ∧D))).

Proof. Let G be a quite nice formula, D a conjunction of field constraints, and c a guarded
command. Since skolem(G∧D) is a nice formula, Lemma 24 implies that wlp(c, skolem(G∧
D)) is a nice formula, so we have

I ∧D |= wlp(c,G ∧D)
I ∧D |= wlp(c, skolem(G ∧D)) (by Lemma 23)
I ∧D |= Elim(wlp(c, skolem(G ∧D))) (by Lemma 21)
I |= Elim(wlp(c, skolem(G ∧D))) (by Lemma 15)

105

www.manaraa.com

Limits of completeness. In our implementation, we have successfully used Elim in the
context of MSOL, where we encode transitive closure using second-order quantification.
Unfortunately, formulas that contain transitive closure of derived fields are often not pretty
nice, leading to false alarms after the application of Elim. This behavior is to be expected
due to the undecidability of transitive closure logics over general graphs [128]. On the other
hand, unlike approaches based on axiomatizations of transitive closure in first-order logic,
our use of MSOL enables complete reasoning about reachability over the backbone fields. It
is therefore useful to be able to consider a field as part of a backbone whenever possible. For
this purpose, it can be helpful to verify conjunctions of constraints using different backbone
for different conjuncts.

Verifying conjunctions of constraints. In our skip list example, the field nextSub

forms an acyclic (sub-)list. It is therefore possible to verify the conjunction of constraints
independently, with nextSub a derived field in the first conjunct (as in Section 6.1.2) but a
backbone field in the second conjunct. Therefore, although the reasoning about transitive
closure is incomplete in the first conjunct, it is complete in the second conjunct.

6.3 Using Field Constraint Analysis to Approximate HOL

Formulas

We next describe the approximation of HOL formulas using field constraint analysis and
monadic second-order logic over trees. The input to this approximation is a HOL formula
representing a sequent that results from splitting the verification condition into conjuncts.
Jahob replaces the sequent with a stronger formula in MSOL over trees and then attempts
to prove the resulting formula using the MONA tool.

Identifying tree backbone. Jahob examines the assumptions of a sequent and pattern-
matches the assumptions of the form tree[f1, . . . , fn], identifying f1, . . . , fn as the edges
in the tree backbone. If there are multiple tree declarations, Jahob currently uses only the
tree constraint occurring in the last assumption of the sequent. The assumption order in
a sequent corresponds to the assumption order in the loop-free code fragment from which
the sequent is generated, so this policy corresponds to reasoning with respect to the tree
backbone in the most recent program state.

Identifying derived fields. Jahob pattern-matches an assumption of the form ∀x y. fx =
y → F as a field constraint on the field f and extracts F as the formula for approximating
the occurrences of the field f . If a field f occurs neither in such a derived field assumption
nor in a tree invariant, Jahob assumes that f is a derived field with a dummy field constraint
True.

Eliminating derived fields. Having identified tree backbone fields and derived fields of
a data structure, Jahob eliminates the derived fields as described in Section 6.2. The result
is a formula where all fields are backbone fields.

Approximating remaining constructs. Jahob conservatively approximates any re-
maining constructs not directly supported by MSOL over trees by replacing subformulas
containing them with True or False. The unsupported constructs include constraints on
integer variables.

Using MSOL over trees. Jahob emits the approximated formula in MONA input
format. If the formula contains only one backbone field name, Jahob uses the string mode

106

www.manaraa.com

of MONA, otherwise it uses the tree mode of MONA. To support an unbounded number of
disconnected tree data structures, Jahob uses a form of structure simulation [129] with an
implicit list that stores all tree data structures in the program. Note that Jahob’s semantic
model represents fields as total functions and treats null as a special object, resulting in
many objects pointing to the null object. Jahob uses structure simulation mapping that
avoids such sharing of null by using distinct MSOL structure objects to represent null

values of different objects of the source structure. To make this modelling faithful to Jahob
semantics, Jahob replaces object equality in the input sequent with an equivalence relation
that conflates all such null values and acts as the identity relation on the remaining objects.

6.4 Experience with Field Constraint Analysis

We have initially implemented field constraint analysis and deployed it as the “Bohne”
analysis plugin of our Hob framework [152, 165]. We have successfully verified singly-
linked lists, doubly-linked lists with and without iterators and header nodes (Section 6.1.1),
two-level skip lists (Section 6.1.2), and our students example from Section 6.1. Because
we have integrated Bohne into the Hob framework, we were able to verify just the parts
of programs which require the power of field constraint analysis with the Bohne plugin,
while using less detailed analyses for the remainder of the program. We have used the
list data structures verified with Bohne as modules of larger examples, such as the 900-
line Minesweeper benchmark and the 1200-line web server benchmark. Hob’s pluggable
analysis approach allowed us to use the typestate plugin [164] and loop invariant inference
techniques to efficiently verify client code, while reserving shape analysis for the container
data structures.

We have subsequently integrated Bohne and field constraint analysis into the Jahob
system as well. This allowed us to largely decouple Bohne’s algorithm for inferring univer-
sally quantified loop invariants from the decision procedures used to answer queries, both
during loop invariant inference and during proving programs with explicitly supplied loop
invariants. The combination of additional reasoning procedures (for example, first-order
reasoning and Nelson-Oppen style decision procedures) with field constraint analysis and
MSOL allowed us to verify programs that require more precise reasoning about uninter-
preted fields than supported by field constraint analysis. Such additional precision was
needed in particular when verifying the specifications where the definition of a content of a
data structure depends on a derived field that has a weak field constraint.

6.5 Further Related Work

We are not aware of any previous work that provides completeness guarantees for analyzing
tree-like data structures with non-deterministic cross-cutting fields for expressive constraints
such as MSOL. TVLA [226, 174] was initially designed as an analysis framework with
user-supplied transfer functions; subsequent work addresses synthesis of transfer functions
using finite differencing [219], which is not guaranteed to be complete. Decision procedures
[185, 160] are effective at reasoning about local properties, but are not complete for reasoning
about reachability. Promising, although still incomplete, approaches include [172] as well as
[196, 161]. Some reachability properties can be reduced to first-order properties using hints
in the form of ghost fields, as in Chapter 5, and as suggested in [151, 185]. Completeness
of analysis can be achieved by representing loop invariants or candidate loop invariants by

107

www.manaraa.com

formulas in a logic that supports transitive closure [190, 262, 157, 259, 261, 251, 211]. These
approaches treat decision procedure as a black box and, when applied to MSOL, inherit the
limitations of structure simulation [129]. Our work can be viewed as a technique for lifting
existing decision procedures into decision procedures that are applicable to a larger class of
structures. Therefore, it can be incorporated into all of these previous approaches.

6.6 Conclusion

Shape analysis is one of the most challenging problems in the field of program analysis;
its central relevance stems from the fact that it addresses key data structure consistency
properties that are 1) important in and of themselves 2) critical for the further verification
of other program properties.

Historically, the primary challenge in shape analysis was seen to be dealing effectively
with the extremely precise and detailed consistency properties that characterize many (but
by no means all) data structures. Perhaps for this reason, many formalisms were built
on logics that supported only data structures with very precisely defined referencing rela-
tionships. This chapter presents an analysis that supports both the extreme precision of
previous approaches and the controlled reduction in the precision required to support a more
general class of data structures whose referencing relationships may be random, depend on
the history of the data structure, or vary for some other reason that places the referencing
relationships inherently beyond the ability of previous logics and analyses to characterize.
We have deployed this analysis in the context of the Hob program analysis and verifica-
tion system; our results show that it is effective at 1) analyzing individual data structures
to 2) verify interfaces that allow other, more scalable analyses to verify larger-grain data
structure consistency properties whose scope spans larger regions of the program.

In a broader context, we view our result as taking an important step towards the prac-
tical application of shape analysis. By supporting data structures whose backbone func-
tionally determines the referencing relationships as well as data structures with inherently
less structured referencing relationships, it promises to be able to successfully analyze the
broad range of data structures that arise in practice.

108

www.manaraa.com

Chapter 7

Boolean Algebra with Presburger

Arithmetic for Data Structure

Sizes

In this chapter I present several results about the first-order theory of Boolean Algebra with
Presburger arithmetic, interpreted over subsets of a finite set. This chapter is based on
[154], whose earlier version appeared in [153] and [158]. In addition, I present a new result
that I established in November 2006: an algorithm proving that quantifier-free Boolean
Algebra with Presburger Arithmetic is in NP. I also include additional observations about
real measures of sets (the end of Section 7.9) and the translations between HOL and BAPA

(Figure 7-1 and Figure 7-15).

I have noted already that sets are a useful abstraction of data structure content. The
motivation for this chapter is the fact that we often need to reason not only about the
content of a data structure, but also about the size of a data structure. For example, we
may want to express the fact that the number of elements stored in a data structure is
equal to the value of an integer variable that is used to cache the data structure size, or we
may want to introduce a decreasing integer measure on the data structure to show program
termination. These considerations lead to a natural generalization of the first-order theory
of BA of sets, a generalization that allows integer variables in addition to set variables, and
allows stating relations of the form |A| = k meaning that the cardinality of the set A is equal
to the value of the integer variable k. Once we have integer variables, a natural question
arises: which relations and operations on integers should we allow? It turns out that, using
only the BA operations and the cardinality operator, we can already define all operations
of PA. This leads to the structure BAPA, which properly generalizes both BA and PA.

As I explain in Section 7.1, a version of BAPA was shown decidable already in [90].
Recently, a decision procedure for a fragment of BAPA without quantification over sets was
presented in [265], cast as a multi-sorted theory. Starting from [154, 164] as the motivation,
I used quantifier elimination in [158] to show the decidability of the full BAPA, which was
initially stated as an open question in [265]. A quantifier-elimination algorithm for a single-
sorted version of BAPA was presented independently in [221] as a way of evaluating queries
in constraint databases; [221] leaves open the complexity of the decision problem.

I give the first formal description of a decision procedure for the full first-order theory
of BAPA. Furthermore, I analyze this decision procedure and show that it yields optimal
computational complexity for BAPA, identical to the complexity of PA [32]. This solves

109

www.manaraa.com

the question of the computational complexity of BAPA.1 We have also implemented our
decision procedure; I report on our initial experience in using the decision procedure in
Jahob.

Contributions. I summarize the contributions of this chapter as follows.

1. As a motivation for BAPA, I show in Section 7.2 that BAPA constraints can be used
for program analysis and verification by expressing 1) data structure invariants and the
correctness of procedures with respect to their specifications,2 3) simulation relations
between program fragments, 4) termination conditions for programs that manipulate
data structures, and 5) projection of formulas onto a desired set of variables, with
applications in static analysis, model checking, automated abstraction, and relational
query evaluation.

2. I present an algorithm α (Section 7.3) that translates BAPA sentences into PA sen-
tences by translating set quantifiers into integer quantifiers and show how it can be
used to decide the truth value of PA formulas and to eliminate individual quantifiers
(Section 7.5).

3. I analyze the algorithm α and show that its complexity matches the lower bound
for PA and is therefore optimal (Section 7.4). This result solves the question of the
complexity of the decision problem for BAPA and is the main technical contribution
of this chapter. Our analysis includes showing an alternating time upper bound for
PA, parameterized by the number of quantifier alternations.

4. I show that the quantifier-free fragment of BAPA can be solved in non-
deterministic polynomial time, using a technique that, for the first time, avoids con-
sidering an exponential number of Venn regions.

5. I discuss our initial experience in using our implementation of BAPA to discharge
verification conditions generated in our verification system.

6. I observe the following additional results:

(a) PA sentences generated by translating BA sentences without cardinalities can
be decided in optimal alternating time for BA (Section 7.4.4), which gives an
alternative proof of upper bound for BA of sets;

(b) Our algorithm extends to countable sets with a predicate distinguishing finite
and infinite sets (Section 7.8);

(c) In contrast to the undecidability of monadic second-order logic over strings
(MSOL) when extended with equicardinality operator, I identify a decidable
combination of MSOL with BA (Section 7.8).

1In [153] I state only the corresponding space upper bound on BAPA; I thank Dexter Kozen for suggesting
to use an alternating time complexity class of [32] to establish the optimal bound.

2This motivation was presented first in [158] and was subsequently used in [266].

110

www.manaraa.com

J K : BAPA formulas→ HOL formulas
Jf1 ∧ f2K = Jf1K ∧ Jf2K
Jf1 ∨ f2K = Jf1K ∨ Jf2K

J¬F K = ¬JF K
J∃x.fK = ∃x :: obj set. JfK
J∀x.fK = ∀x :: obj set. JfK
J∃k.fK = ∃k :: int. JfK
J∀k.fK = ∀k :: int. JfK

Jb1 = b2K = Jb1K = Jb2K
Jb1 ⊆ b2K = Jb1K ⊆ Jb2K
Jt1 = t2K = Jt1K = Jt2K
Jt1 < t2K = Jt1K < Jt2K
JK dvd tK = (JKKmod JtK = 0)

JxK = x
J0K = ∅
J1K = Object

Jb1 ∪ b2K = Jb1K ∪ Jb2K
Jb1 ∩ b2K = Jb1K ∩ Jb2K

JbcK = Object \ JbK
JkK = k

JKK = K
JMAXCK = cardinality Object

Jt1 + t2K = Jt1K + Jt2K
JK · tK = JKK ∗ JtK
J|b|K = cardinality JbK

Figure 7-1: Embedding of BAPA into HOL

111

www.manaraa.com

F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F | ∃x.F | ∀x.F

A ::= B1 = B2 | B1 ⊆ B2 | |B| = K | |B| ≥ K

B ::= x | 0 | 1 | B1 ∪B2 | B1 ∩B2 | B
c

K ::= 0 | 1 | 2 | . . .

Figure 7-2: Formulas of Boolean Algebra (BA)

F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F | ∃k.F | ∀k.F

A ::= T1 = T2 | T1 < T2 | K dvdT

T ::= K | T1 + T2 | K · T

K ::= . . .−2 | −1 | 0 | 1 | 2 . . .

Figure 7-3: Formulas of Presburger Arithmetic (PA)

7.1 The First-Order Theory BAPA

Figure 7-4 presents the syntax of Boolean Algebra with Presburger Arithmetic (BAPA),
which is the focus of this chapter. We next present some justification for the operations
in Figure 7-4. Our initial motivation for BAPA was the use of BA to reason about data
structures in terms of sets [152]. Our language for BA (Figure 7-2) allows cardinality
constraints of the form |A| = K where K is a constant integer. Such constant cardinality
constraints are useful and enable quantifier elimination for the resulting language [232, 176].
However, they do not allow stating constraints such as |A| = |B| for two sets A and B, and
cannot represent constraints on relationships between sizes of sets and integer variables.
Consider therefore the equicardinality relation A ∼ B that holds iff |A| = |B|, and consider
BA extended with relation A ∼ B. Define the ternary relation plus(A,B,C) ⇐⇒ (|A| +
|B| = |C|) by the formula ∃x1. ∃x2. x1 ∩ x2 = ∅ ∧ A ∼ x1 ∧ B ∼ x2 ∧ x1 ∪ x2 = C. The
relation plus(A,B,C) allows us to express addition using arbitrary sets as representatives
for natural numbers; ∅ can represent the natural number zero, and any singleton set can
represent the natural number one. (The property of A being a singleton is definable using
e.g. the first-order formula A 6= ∅ ∧ ∀B.A∩B = B → (B = ∅ ∨B = A).) Moreover, we can
represent integers as equivalence classes of pairs of natural numbers under the equivalence
relation (x, y) ≈ (u, v) ⇐⇒ x + v = u + y; this construction also allows us to express
the unary predicate of being non-negative. The quantification over pairs of sets represents
quantification over integers, and quantification over integers with the addition operation and
the predicate “being non-negative” can express all PA operations, presented in Figure 7-3.
Therefore, a natural closure under definable operations leads to our formulation of the
language BAPA in Figure 7-4, which contains both sets and integers.

The argument above also explains why we attribute the decidability of BAPA to [90,
Section 8], which showed the decidability of BA over sets extended with the equicardinal-
ity relation ∼, using the decidability of the first-order theory of the addition of cardinal
numbers.

The language BAPA has two kinds of quantifiers: quantifiers over integers and quantifiers
over sets; we distinguish between these two kinds by denoting integer variables with symbols
such as k, l and set variables with symbols such as x, y. We use the shorthand ∃+k.F (k) to

112

www.manaraa.com

F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F | ∃x.F | ∀x.F | ∃k.F | ∀k.F

A ::= B1 = B2 | B1 ⊆ B2 | T1 = T2 | T1 < T2 | K dvdT

B ::= x | 0 | 1 | B1 ∪B2 | B1 ∩B2 | B
c

T ::= k | K | MAXC | T1 + T2 | K · T | |B|

K ::= . . .−2 | −1 | 0 | 1 | 2 . . .

Figure 7-4: Formulas of Boolean Algebra with Presburger Arithmetic (BAPA)

denote ∃k.k ≥ 0 ∧ F (k) and, similarly ∀+k.F (k) to denote ∀k.k ≥ 0→ F (k). In summary,
the language of BAPA in Figure 7-4 subsumes the language of PA in Figure 7-3, subsumes the
language of BA in Figure 7-2, and contains non-trivial combination of these two languages
in the form of using the cardinality of a set expression as an integer value.

The semantics of operations in Figure 7-4 is the expected one. We interpret integer
terms as integers, and interpret set terms as elements of the powerset of a finite set. The
MAXC constant denotes the size of the finite universe U , so we require MAXC = |U| in all
models. Our results generalize to the Boolean algebra of powersets of a countable set, see
Section 7.8.

Figure 7-1 formalizes the semantics of BAPA by giving a translation into our higher-
order language presented in Section 4.1, showing that BAPA is a fragment of higher-order
logic.

7.2 Applications of BAPA

This section illustrates the importance of BAPA constraints. Section 7.2.1 shows the uses
of BAPA constraints to express and verify data structure invariants as well as procedure
preconditions and postconditions. Section 7.2.2 shows how a class of simulation relation
conditions can be proved automatically using a decision procedure for BAPA. Section 7.2.3
shows how BAPA can be used to express and prove termination conditions for a class of
programs. Section 7.2.4 discusses the applications of quantifier elimination, which is relevant
to BAPA because our decision procedure is based on quantifier elimination.

7.2.1 Verifying Data Structure Consistency

Figure 7-5 presents a procedure insert in a language that directly manipulates sets. Such
languages can either be directly executed [84] or can arise as abstractions of programs in
standard languages [152]. The program in Figure 7-5 manipulates a global set of objects
content and an integer field size. The program maintains an invariant I that the size of
the set content is equal to the value of the variable size. The insert procedure inserts an
element e into the set and correspondingly updates the integer variable. The requires clause
(precondition) of the insert procedure is that the parameter e is a non-null reference to an
object that is not stored in the set content. The ensures clause (postcondition) of the
procedure is that the size variable after the insertion is positive. Note that we represent
references to objects (such as the procedure parameter e) as sets with at most one element.
An empty set represents a null reference; a singleton set {o} represents a reference to object
o. The value of a variable after procedure execution is indicated by marking the variable
name with a prime.

113

www.manaraa.com

var content : set;
var size : integer;
invariant I ⇐⇒ (size = |content|);

procedure insert(e : element)
maintains I

requires |e| = 1 ∧ |e ∩ content| = 0
ensures size′ > 0
{

content := content ∪ e;
size := size + 1;

}

Figure 7-5: insert Procedure

˘

|e| = 1 ∧ |e ∩ content| = 0 ∧ size = |content|
¯

content := content ∪ e; size := size + 1;
˘

size′ > 0 ∧ size′ = |content′|
¯

Figure 7-6: Hoare Triple for insert

∀e. ∀content. ∀content′. ∀size. ∀size′.

(|e| = 1 ∧ |e ∩ content| = 0 ∧ size = |content| ∧
content′ = content ∪ e ∧ size′ = size + 1) →

size′ > 0 ∧ size′ = |content′|

Figure 7-7: Verification Condition for Figure 7-6

The insert procedure maintains an invariant, I, which captures the relationship between
the size of the set content and the integer variable size. The invariant I is implicitly conjoined
with the requires and the ensures clauses of the procedure. The Hoare triple in Figure 7-6
summarizes the resulting correctness condition for the insert procedure. Figure 7-7 presents
a verification condition corresponding to the Hoare triple in Figure 7-6. Note that the
verification condition contains both set and integer variables, contains quantification over
these variables, and relates the sizes of sets to the values of integer variables. Our small
example leads to a formula without quantifier alternations; in general, formulas that arise in
verification may contain alternations of existential and universal variables over both integers
and sets. This chapter shows the decidability of such formulas and presents the complexity
of the decision procedure.

7.2.2 Proving Simulation Relation Conditions

BAPA constraints are also useful when proving that a given binary relation on states is
a simulation relation between two program fragments. Figure 7-8 shows one such exam-
ple. The concrete procedure start1 manipulates two sets: a set of running processes and
a set of suspended processes in a process scheduler. The procedure start1 inserts a new
process x into the set of running processes R, unless there are already too many running
processes. The procedure start2 is a version of the procedure that operates in a more ab-
stract state space: it maintains only the union P of all processes and the number k of
running processes. Figure 7-8 shows a forward simulation relation r between the transi-
tion relations for start1 and start2. The standard simulation relation diagram condition is
∀s1.∀s

′
1.∀s2.(t1(s1, s

′
1)∧ r(s1, s2))→ ∃s′2. (t2(s2, s

′
2)∧ r(s′1, s

′
2)). In the presence of precondi-

tions, t1(s1, s
′
1) = (pre1(s1)→ post1(s1, s

′
1)) and t2(s2, s

′
2) = (pre2(s2)→ post2(s2, s

′
2)), and

114

www.manaraa.com

var R : set;
var S : set;

procedure start1(x)
requires x 6⊆ R ∧ |x| = 1 ∧ |R| < MAXR

ensures R′ = R ∪ x ∧ S′ = S

{
R := R ∪ x;

}

var P : set;
var k : integer;

procedure start2(x)
requires x 6⊆ P ∧ |x| = 1 ∧ k < MAXR

ensures P′ = P ∪ x ∧ k′ = k + 1
{

P := P ∪ x;
k := k + 1;

}

Simulation relation r:

r((R, S), (P, k)) = (P = R ∪ S ∧ k = |R|)

Simulation relation conditions in BAPA:
1. ∀x,R, S, P, k.(P = R ∪ S ∧ k = |R|) ∧ (x 6⊆ P ∧ |x| = 1 ∧ k < MAXR) →

(x 6⊆ R ∧ |x| = 1 ∧ |R| < MAXR)
2. ∀x,R, S, R′, S′, P, k.∃P′, k′.((P = R ∪ S ∧ k = |R|) ∧ (R′ = R ∪ x ∧ S′ = S) ∧

(x 6⊆ P ∧ |x| = 1 ∧ k < MAXR)) →
(P′ = P ∪ x ∧ k′ = k + 1) ∧ (P′ = R′ ∪ S′ ∧ k′ = |R′|)

Figure 7-8: Proving simulation relation in BAPA

sufficient conditions for simulation relation are:

1. ∀s1.∀s2.r(s1, s2) ∧ pre2(s2)→ pre1(s1)
2. ∀s1.∀s

′
1.∀s2.∃s

′
2. r(s1, s2) ∧ post1(s1, s

′
1) ∧ pre2(s2) → post2(s2, s

′
2) ∧ r(s′1, s

′
2)

Figure 7-8 shows BAPA formulas that correspond to the simulation relation conditions in
this example. Note that the second BAPA formula has a quantifier alternation, which
illustrates the relevance of quantifiers in BAPA.

7.2.3 Proving Program Termination

We next show that BAPA is useful for proving program termination. A standard technique
for proving termination of a loop is to introduce a ranking function f that maps program
states to non-negative integers, then prove that the value of the function decreases at each
loop iteration. In other words, if t(s, s′) denotes the relationship between the state at the
beginning and the state at the end of each loop iteration, then the condition ∀s.∀s′.t(s, s′)→
f(s) > f(s′) holds. Figure 7-9 shows an example program that processes each element of
the initial value of set iter; this program can be viewed as manipulating an iterator over
a data structure that implements a set. Using the the ability to take cardinality of a set
allows us to define a natural ranking function for this program. Figure 7-10 shows the
termination proof based on such ranking function. The resulting termination condition can
be expressed as a formula that belongs to BAPA, and can be discharged using our decision
procedure. In general, we can reduce the termination problem of programs that manipulate
both sets and integers to showing a simulation relation with a fragment of a terminating
program that manipulates only integers, which can be proved terminating using techniques
[210]. The simulation relation condition can be proved correct using our BAPA decision
procedure whenever the simulation relation is expressible with a BAPA formula. While one
could, in principle, use finite sets directly to describe certain ranking functions, the ability
to abstract sets into integers allows us to use existing tools and techniques developed for

115

www.manaraa.com

var iter : set;

procedure iterate()
{

while iter 6= ∅ do

var e : set;
e := choose iter;
iter := iter \ e;
process(e);

done

}

Figure 7-9: Terminating procedure

Ranking function:
f (s) = |s|

Transition relation:
t(iter, iter′) = (∃e. |e| = 1 ∧ e ⊆ iter ∧ iter′ = iter \ e)

Termination condition in BAPA:
∀iter.∀iter′. (∃e.|e| = 1 ∧ e ⊆ iter ∧ iter′ = iter \ e)

→ |iter′| < |iter|

Figure 7-10: Termination proof for Figure 7-9

integer ranking functions.

7.2.4 Quantifier Elimination

The fact that BAPA admits quantifier elimination enables applications that involve hiding
certain variables from a BAPA formula. Hiding a variable x in a formula means existentially
quantifying over x and then eliminating the quantifier ∃x. This process can also be viewed
as a projection of a formula onto variables other than x. As an example, Figure 7-11 shows
the transition relation inspired by the procedure insert in Figure 7-6. The transition relation
mentions a variable e that is local to the procedure and not meaningful outside it. In the
public description of the transition relation the variable e is existentially quantified. Our
quantifier elimination algorithm (Section 7.3, Section 7.5) removes the quantifier from the
formula and obtains an equivalent formula without quantifiers, such as the one shown in
the lower part of Figure 7-11.

In general, variable hiding is useful in projecting state transitions and invariants onto a
desired set of variables, computing relational composition of transition relations, and com-
puting the image of a set under a transition relation. Such symbolic computation of tran-
sition relations, with appropriate widenings, can be used to generalize static analyses such
as [164] and model checking approaches such as [44]. Quantifier elimination here ensures
that the transition relation remains represented by a quantifier-free formula throughout the
analysis.

Quantifier elimination is also useful for query evaluation in constraint databases [221],
and loop invariant inference [137].

7.3 Decision Procedure for BAPA

This section presents our algorithm, denoted α, which decides the validity of BAPA sen-
tences. The algorithm reduces a BAPA sentence to an equivalent PA sentence with the

∃e. |e| = 1 ∧ content′ = content ∪ e

⇓

content ⊆ content′ ∧ |content′ \ content| ≤ 1 ∧ |content′| ≥ 1

Figure 7-11: Eliminating a local variable from a transition relation

116

www.manaraa.com

same number of quantifier alternations and an exponential increase in the total size of the
formula. This algorithm has several desirable properties:

1. Given an optimal algorithm for deciding PA sentences, the algorithm α is optimal for
deciding BAPA sentences and shows that the complexity of BAPA is the same as the
complexity of PA (Section 7.4).

2. The algorithm α does not eliminate integer variables, but instead produces an equiva-
lent quantified PA sentence. The resulting PA sentence can therefore be decided using
any decision procedure for PA, including the decision procedures based on automata
[143, 36].

3. The algorithm α can eliminate set quantifiers from any extension of PA. We thus
obtain a technique for adding a particular form of set reasoning to every extension
of PA, and the technique preserves the decidability of the extension. One example of
decidable theory that extends PA is MSOL over strings, see Section 7.8.

4. For simplicity we present the algorithm α as a decision procedure for formulas with no
free variables, but the algorithm can be used to transform and simplify formulas with
free variables as well, because it transforms one quantifier at a time starting from the
innermost one. We explore this version of our algorithm in Section 7.5.

We next describe the algorithm α for transforming a BAPA sentence F0 into a PA sentence.
As the first step of the algorithm, transform F0 into prenex form

Qpvp. . . . Q1v1. F (v1, . . . , vp)

where F is quantifier-free, and each quantifier Qivi is of one the forms ∃k, ∀k, ∃y, ∀y where
k denotes an integer variable and y denotes a set variable.

The next step of the algorithm is to separate F into a BA part and a PA part. To achieve
this, replace each formula b1 = b2 where b1 and b2 are set expressions, with the conjunction
b1 ⊆ b2 ∧ b2 ⊆ b1, and replace each formula b1 ⊆ b2 with the equivalent formula |b1∩b

c
2| = 0.

In the resulting formula, each set variable x occurs in some term |t(x)|. Next, use the same
reasoning as when generating disjunctive normal form for propositional logic to write each
set expression t(x) as a union of cubes (regions in the Venn diagram [243]). The cubes have
the form

⋂n
i=1 x

αi

i where xαi

i is either xi or xc
i ; there are m = 2n cubes s1, . . . , sm. Suppose

that t(x) = sj1 ∪ . . . ∪ sja ; then replace the term |t(x)| with the term
∑a

i=1 |sji
|. In the

resulting formula, each set x appears in an expression of the form |si| where si is a cube.
For each si introduce a new variable li. The resulting formula is then equivalent to

Qpvp. . . . Q1v1.
∃+l1, . . . , lm.

∧m

i=1 |si| = li ∧ G1
(7.1)

where G1 is a PA formula. Formula (7.1) is the starting point of the main phase of algorithm
α. The main phase of the algorithm successively eliminates quantifiers Q1v1, . . . , Qpvp while
maintaining a formula of the form

Qpvp . . . Qrvr.
∃+l1 . . . lq.

∧q

i=1 |si| = li ∧ Gr
(7.2)

where Gr is a PA formula, r grows from 1 to p+ 1, and q = 2e where e for 0 ≤ e ≤ n is the
number of set variables among vp, . . . , vr. The list s1, . . . , sq is the list of all 2e partitions
formed from the set variables among vp, . . . , vr.

117

www.manaraa.com

We next show how to eliminate the innermost quantifier Qrvr from the formula (7.2).
During this process, the algorithm replaces the formula Gr with a formula Gr+1 which has
more integer quantifiers. If vr is an integer variable then the number of sets q remains the
same, and if vr is a set variable, then q reduces from 2e to 2e−1. We next consider each of
the four possibilities ∃k, ∀k, ∃y, ∀y for the quantifier Qrvr.

Case ∃k: Consider first the case ∃k. Because k does not occur in
∧q

i=1 |si| = li, simply
move the existential quantifier to Gr and let Gr+1 = ∃k.Gr, which completes the step.

Case ∀k: For universal quantifiers, it suffices to let Gr+1 = ∀k.Gr, again because k does
not occur in

∧q
i=1 |si| = li.

Case ∃y: We next show how to eliminate an existential set quantifier ∃y from

∃y. ∃+l1 . . . lq.

q
∧

i=1

|si| = li ∧ Gr (7.3)

which is equivalent to ∃+l1 . . . lq. (∃y.
∧q

i=1 |si| = li) ∧ Gr. This is the key step of the
algorithm and relies on the following lemma.

Lemma 26 Let b1, . . . , bn be finite disjoint sets, and l1, . . . , ln, k1, . . . , kn be natural num-
bers. Then the following two statements are equivalent:
1. There exists a finite set y such that

n
∧

i=1

|bi ∩ y| = ki ∧ |bi ∩ y
c| = li (1)

2.
n
∧

i=1

|bi| = ki + li (2)

Proof. (→) Suppose that there exists a set y satisfying (1). Because bi ∩ y and bi ∩ yc are
disjoint, |bi| = |bi ∩ y|+ |bi ∩ y

c|, so |bi| = ki + li.

(←) Suppose that (2) holds, so |bi| = ki + li for each of the pairwise disjoint sets
b1, . . . , bn. For each bi choose a subset yi ⊆ bi such that |yi| = ki. Because |bi| = ki + li, we
have |bi ∩ y

c
i | = li. Having chosen y1, . . . , yn, let y =

⋃n
i=1 yi. For i 6= j we have bi ∩ yj = ∅

and bi ∩ y
c
j = bi, so bi ∩ y = yi and bi ∩ y

c = bi ∩ y
c
i . By the choice of yi, we conclude that y

is the desired set for which (1) holds.

In the quantifier elimination step, assume without loss of generality that the set variables
s1, . . . , sq are numbered such that s2i−1 ≡ s′i ∩ y

c and s2i ≡ s′i ∩ y for some cube s′i. Then
apply Lemma 26 and replace each pair of conjuncts

|s′i ∩ y
c| = l2i−1 ∧ |s

′
i ∩ y| = l2i

with the conjunct |s′i| = l2i−1 + l2i, yielding the formula

∃+l1 . . . lq.

q′

∧

i=1

|s′i| = l2i−1 + l2i ∧ Gr (7.4)

118

www.manaraa.com

α1 (∃y. ∃+l1 . . . l2q′ .
∧q′

i=1 |si ∩ yc| = l2i−1 ∧ |si ∩ y| = l2i ∧Gr) =

∃+l′1 . . . l
′
q′ .

∧q′

i=1 |si| = l′i ∧ ∃
+l1 . . . l2q′ .

∧q′

i=1 .l
′
i = l2i−1 + l2i ∧Gr

α1 (∀y. ∃+l1 . . . l2q′ .
∧q′

i=1 |si ∩ yc| = l2i−1 ∧ |si ∩ y| = l2i ∧Gr) =

∃+l′1 . . . l
′
q′ .

∧q′

i=1 |si| = l′i ∧ ∀
+l1 . . . l2q′ .

∧q′

i=1 .l
′
i = l2i−1 + l2i → Gr

α1 (∃k. ∃+l1 . . . l2q′ .
∧q′

i=1 |si ∩ y
c| = l2i−1 ∧ |si ∩ y| = l2i ∧Gr) =

∃+l1 . . . l2q′ .
∧q′

i=1 |si ∩ yc| = l2i−1 ∧ |si ∩ y| = l2i ∧ ∃k.Gr

α1 (∀k. ∃+l1 . . . l2q′ .
∧q′

i=1 |si ∩ yc| = l2i−1 ∧ |si ∩ y| = l2i ∧Gr) =

∃+l1 . . . l2q′ .
∧q′

i=1 |si ∩ yc| = l2i−1 ∧ |si ∩ y| = l2i ∧ ∀k.Gr

αF (G(|1|)) = G(MAXC)

α = prenex ; separate ; α∗
1 ; αF

Figure 7-12: Algorithm α for translating BAPA sentences to PA sentences

for q′ = 2e−1. Finally, to obtain a formula of the form (7.2) for r + 1, introduce fresh
variables l′i constrained by l′i = l2i−1 + l2i, rewrite (7.4) as

∃+l′1 . . . l
′
q′ .

q′

∧

i=1

|s′i| = l′i ∧ (∃+l1 . . . lq.

q′

∧

i=1

l′i = l2i−1 + l2i ∧ Gr)

and let

Gr+1 ≡ ∃
+l1 . . . lq.

q′
∧

i=1

l′i = l2i−1 + l2i ∧ Gr (∃-step)

This completes the description of the elimination of an existential set quantifier ∃y.

Case ∀y: To eliminate a set quantifier ∀y, observe that

¬(∃+l1 . . . lq.

q
∧

i=1

|si| = li ∧ Gr)

is equivalent to ∃+l1 . . . lq.
∧q

i=1 |si| = li ∧ ¬Gr, because existential quantifiers over li
together with the conjuncts |si| = li act as definitions for li, so we may first substitute all
values li into Gr, then perform the negation, and then extract back the definitions of all
values li. By expressing ∀y as ¬∃y¬, we can show that the elimination of ∀y is analogous
to elimination of ∃y: introduce fresh variables l′i = l2i−1 + l2i and let

Gr+1 ≡ ∀
+l1 . . . lq. (

q′
∧

i=1

l′i = l2i−1 + l2i) → Gr (∀-step)

Final step: After eliminating all quantifiers by repeatedly applying the step of the algo-

rithm, we obtain a formula of the form ∃+l. |1| = l ∧ Gp+1(l). Namely, in the step when
we have only one set variable y and its negation yc, we can write |y| and |yc| as |1 ∩ y and
|1∩ yc| and apply the algorithm one more time. We then define the result of the algorithm,
denoted α(F0), to be the PA sentence Gp+1(MAXC).

We summarize the algorithm in Figure 7-12. We use f ; g to denote the function compo-
sition g◦f , and we use f∗ to denote iterative application of function f . The prenex function
transforms a formula into the prenex form, whereas the separate function transforms it into

119

www.manaraa.com

∀+l1.∀
+l0. MAXC = l1 + l0 →

∀+l11.∀
+l01.∀

+l10.∀
+l00.

l1 = l11 + l01 ∧ l0 = l10 + l00 →
∀+l111. ∀

+l011. ∀
+l101. ∀

+l001.

∀+l110. ∀
+l010. ∀

+l100. ∀
+l000.

l11 = l111 + l011 ∧ l01 = l101 + l001 ∧
l10 = l110 + l010 ∧ l00 = l100 + l000 →

∀size.∀size ′.

(l111 + l011 + l101 + l001 = 1 ∧
l111 + l011 = 0 ∧
l111 + l011 + l110 + l010 = size ∧
l100 = 0 ∧
l011 + l001 + l010 = 0 ∧
size ′ = size + 1) →

(0 < size ′ ∧
l111 + l101 + l110 + l100 = size ′)

Figure 7-13: The translation of the BAPA

sentence from Figure 7-7 into a PA sentence

general relationship:

li1,...,ik
= |seti1

q ∩ set
i2
q+1 ∩ . . . ∩ set

ik

S |
q = S − (k − 1)

(S is number of set variables)

in this example:

set1 = content′

set2 = content

set3 = e

l000 = |content′
c
∩ contentc ∩ ec|

l001 = |content′
c
∩ contentc ∩ e|

l010 = |content′
c
∩ content ∩ ec|

l011 = |content′
c
∩ content ∩ e|

l100 = |content′ ∩ contentc ∩ ec|
l101 = |content′ ∩ contentc ∩ e|
l110 = |content′ ∩ content ∩ ec|
l111 = |content′ ∩ content ∩ e|

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

(H)

Figure 7-14: The correspondence, denoted
H, between integer variables in Figure 7-13
and set variables in Figure 7-7

form (7.1). We have argued above that each of the individual steps of the algorithm is
equivalence preserving, so we have the following lemma.

Lemma 27 The transformations prenex, separate, α1, αF are all equivalence preserving
(with respect to the BAPA interepretation).

By induction we obtain the correctness of our algorithm.

Theorem 28 The algorithm α in Figure 7-12 maps each BAPA-sentence F0 into an equiv-
alent PA-sentence α(F0).

The validity of PA sentences is decidable [212]. In combination with a decision procedure
for PA such as [215, 36, 119], the algorithm α is a decision procedure for BAPA sentences.

7.3.1 Example Run of Algorithm α

As an illustration, we show the result of runing the algorithm α on the BAPA formula in
Figure 7-7. The result is the PA formula in Figure 7-13. Note that the structure of the re-
sulting formula mimics the structure of the original formula: every set quantifier is replaced
by the corresponding block of quantifiers over non-negative integers constrained to parti-
tion the previously introduced integer variables. Figure 7-14 presents the correspondence
between the set variables of the BAPA formula and the integer variables of the translated PA

formula. Note that the relationship content′ = content∪ e translates into the conjunction of
the constraints |content′∩ (content∪ e)c| = 0 ∧ |(content∪ e)∩ content′

c| = 0, which reduces
to the conjunction l100 = 0 ∧ l011 + l001 + l010 = 0 using the translation of set expressions
into the disjoint union of partitions, and the correspondence in Figure 7-14.

7.4 Complexity of BAPA

In this section we analyze the algorithm α from Section 7.3 and use it to show that
the computational complexity of BAPA is identical to the complexity of PA, which is

120

www.manaraa.com

STA(∗, 22nO(1)

, n) [32], that is, alternating doubly exponential time with a linear number
of alternations.

An alternating Turing machine [52] is a generalization of a non-deterministic Turing
machine that, in addition to making non-deterministic (existential) choices, can make uni-
versal choices. A universal choice step succeeds iff the computation succeeds for all the
chosen values. We then have the following definition.

Definition 29 [32]. STA(s(n), t(n), a(n)) denotes the class of languages computable using
an alternating Turing machine that uses s(n) cells on its tape, runs in t(n) steps, and
performs a(n) alternations.

In the remainder of this section we first show the lower bound on the complexity of
BAPA. We then use the algorithm α in the previous section and a parameterized upper
bound on PA to establish the matching upper bound on BAPA. We finally show that the
algorithm α can also decide BA formulas using optimal resources STA(∗, 2n, n), which is the
complexity established in [145]. Moreover, by construction, our procedure reduces to the
procedure for PA formulas if there are no set quantifiers. Therefore, the algorithm α can
be used as a component for an optimal algorithm for BAPA but also for the special cases of
BA and PA.

7.4.1 Lower Bound on the Complexity of Deciding BAPA

The lower bound of PA follows by showing how to encode full integer arithmetic in which
quantifiers are bounded by 22n

using formulas of size n [146, Lecture 23].

Fact 1 [32, Page 75]. The truth value of PA formulas of size O(n) can encode the acceptance
of an alternating Turing machine with n alternations running in 22n

steps.

Because BAPA contains PA, the lower bound directly applies to BAPA.

Lemma 30 The truth value of BAPA formulas of size O(n) can encode the acceptance of
an alternating Turing machine with n alternations running in 22n

steps.

7.4.2 Parameterized Upper Bound on PA

As a step towards establishing the upper bound for BAPA, we show a parameterized upper
bound on PA. We use the following result.

Fact 2 [217, Page 324]. If F is a closed PA formula (Q1x1) . . . (Qrxr)G(x1, . . . , xr) of size
n > 4 with m quantifier alternations, where Q1, . . . , Qr are quantifiers and G is quantifier-
free, then F is true iff the formula

(

Q1x1 ≤ 22(c+1)nm+3
)

. . .

(

Qrxr ≤ 22(c+r)nm+3
)

G(x1, . . . , xr)

with bounded quantifiers is true for some c > 0.

Fact 2 allows us to establish the following parameterized upper bound on PA.

Theorem 31 A PA sentence of size n with m quantifier alternations can be decided in
STA(∗, 2nO(m)

,m).

121

www.manaraa.com

Proof. Analogous to the proof of the space upper bound in [217, Page 325]. To decide
formulas with m quantifier alternations, use an alternating Turing machine that does m
alternations, mimicking the quantifier alternations. The Turing machine guesses the assign-
ments to variables x1, . . . , xr in ranges given by Fact 2. This requires guessing

2(c+1)nm+3
+ . . . + 2(c+r)nm+3

≤ 2c1nm+4

bits (because r ≤ n), and then evaluating the formula in time proportional to n2c1nm+4
≤

2c2nm+4
, which is in 2nO(m)

.

7.4.3 Upper Bound on the Complexity of Deciding BAPA

We next show that the algorithm in Section 7.3 transforms a BAPA sentence F0 into a PA

sentence whose size is at most exponential and which has the same number of quantifier
alternations. Theorem 31 will then give us the upper bound on BAPA that matches the
lower bound of Lemma 30.

If F is a formula in prenex form, let size(F) denote the size of F , and let alts(F) denote
the number of quantifier alternations in F .

Lemma 32 For the algorithm α from Section 7.3 there is a constant c > 0 such that
size(α(F0)) ≤ 2c·size(F0) and alts(α(F0)) = alts(F0). Moreover, the algorithm α runs in
2O(size(F0)) deterministic time.

Proof. To gain some intuition on the size of α(F0) compared to the size of F0, compare
first the formula in Figure 7-13 with the original formula in Figure 7-7. Let n denote
the size of the initial formula F0 and let S be the number of set variables. Note that
the following operations are polynomially bounded in time and space: 1) transforming a
formula into prenex form, 2) transforming relations b1 = b2 and b1 ⊆ b2 into the form
|b| = 0. Introducing set variables for each partition and replacing each |b| with a sum of
integer variables yields formula G1 whose size is bounded by O(n2SS) (the last S factor
is because representing a variable from the set of K variables requires space logK). The
subsequent transformations introduce the existing integer quantifiers, whose size is bounded
by n, and introduce additionally 2S−1 + . . . + 2 + 1 = 2S − 1 new integer variables along
with the equations that define them. Note that the defining equations always have the form
l′i = l2i−1 + l2i and have size bounded by S. We therefore conclude that the size of α(F0)
is O(nS(2S + 2S)) and therefore O(nS2S), which is in 2O(n). Note that we have obtained
a more precise bound O(nS2S) indicating that the exponential explosion is caused only by
set variables. Finally, the fact that the number of quantifier alternations is the same in F0

and α(F0) is immediate because the algorithm replaces one set quantifier with a block of
corresponding integer quantifiers.

Combining Lemma 32 with Theorem 31 we obtain the upper bound for BAPA.

Lemma 33 The validity of a BAPA sentence of size n and the number of quantifier alter-
nations m can be decided in STA(∗, 22O(mn)

,m).

Proof. The algorithm first applies the algorithm α and then applies the algorithm from The-
orem 31. Consider a BAPA formula of size n with m quantifier alternations. By Lemma 32
applying α takes 2O(n) steps and produces a formula of size 2O(n) with m quantifier alter-

nations. Theorem 31 then allows deciding such formula in STA(∗, 22(2O(n))O(m)

,m), which is

STA(∗, 22O(mn)
,m).

122

www.manaraa.com

Summarizing Lemma 30 and Lemma 33, taking into account that 2O(mn) is in 2nO(1)
for

m ≤ n, we establish the desired theorem.

Theorem 34 The validity of BAPA formulas is STA(∗, 22nO(1)

, n)-complete.

7.4.4 Deciding BA as a Special Case of BAPA

We next analyze the result of applying the algorithm α to a pure BA sentence F0. By a pure
BA sentence we mean a BA sentence without cardinality constraints, containing only the
standard operations ∩,∪, c and the relations ⊆,=. At first, it might seem that the algorithm
α is not a reasonable approach to deciding BA formulas given that the complexity of PA is
worse than the corresponding of BA. However, we show that the sentences PABA = {α(F0) |
F0 is in BA} generated by applying α to pure BA sentences can be decided using resources
optimal for BA [145]. The key observation is that if a PA formula is in PABA, then we can
use the bounds for quantified variables that are smaller than the bounds in Fact 2.

Let F0 be a pure BA formula and let S be the number of set variables in F0 (the set
variables are the only variables in F0). Let l1, . . . , lq be the free variables of the formula
Gr(l1, . . . , lq) in the algorithm α. Then q = 2e for e = S + 1− r. Let w1, . . . , wq be integers
specifying the values of l1, . . . , lq. We then have the following lemma.

Lemma 35 For each r where 1 ≤ r ≤ S, formula Gr(w1, . . . , wq) is equivalent to formula
Gr(w̄1, . . . , w̄q) where w̄i = min(wi, 2

r−1).

Proof. We prove the claim by induction. For r = 1, observe that the translation of
a quantifier-free part of the pure BA formula yields a PA formula F1 whose all atomic
formulas are of the form li1 + . . .+ lik = 0, which are equivalent to

∨k
j=1 lij = 0. Therefore,

the truth-value of F1 depends only on whether the integer variables are zero or non-zero,
which means that we may restrict the variables to interval [0, 1].

For the inductive step, consider the elimination of a set variable, and assume that the
property holds for Gr and for all q-tuples of non-negative integers w1, . . . , wq. Let q′ = q/2
and w′

1, . . . , w
′
q′ be a tuple of non-negative integers. We show that Gr+1(w′

1, . . . , w
′
q′) is

equivalent to Gr+1(w̄′
1, . . . , w̄

′
q′). We consider the case when Gr+1 is obtained by eliminating

an existential set quantifier, so

Gr+1 ≡ ∃
+l1 . . . lq.

q′

∧

i=1

l′i = l2i−1 + l2i ∧ Gr

The case for the universal quantifier can be obtained from the proof for the existential one
by expressing ∀ as ¬∃¬. We show both directions of the equivalence.

Suppose first that Gr+1(w̄′
1, . . . , w̄

′
q′) holds. Then for each w̄′

i there are u2i−1 and u2i

such that w̄′
i = u2i−1 + u2i and Gr(u1, . . . , uq). We define the witnesses w1, . . . , wq for

existential quantifiers as follows. If w′
i ≤ 2r, then w̄′

i = w′
i, so we use the same witnesses,

letting w2i−1 = u2i−1 and w2i = u2i. Let w′
i > 2r, then w̄′

i = 2r. Because u2i−1 + u2i = 2r,
we have u2i−1 ≥ 2r−1 or u2i ≥ 2r−1. Suppose, without loss of generality, u2i ≥ 2r−1. Then
let w2i−1 = u2i−1 and let w2i = w′

i−u2i−1. Because w2i ≥ 2r−1 and u2i ≥ 2r−1, by induction
hypothesis we have

Gr(. . . , w2i, . . .) ⇐⇒ Gr(. . . , u2i, . . .) ⇐⇒ Gr(. . . , 2r−1, . . .)

For w1, . . . , wq chosen as above we therefore have w′
i = w2i−1 + w2i and Gr(w1, . . . , wq),

which by definition of Gr+1 means that Gr+1(w′
1, . . . , w

′
q′) holds.

123

www.manaraa.com

Conversely, suppose that Gr+1(w′
1, . . . , w

′
q′) holds. Then there are w1, . . . , wq such that

Gr(w1, . . . , wq) and w′
i = w2i−1 + w2i. If w2i−1 ≤ 2r−1 and w2i ≤ 2r−1 then w′

i ≤ 2r so
let u2i−1 = w2i−1 and u2i = w2i. If w2i−1 > 2r−1 and w2i > 2r−1 then let u2i−1 = 2r−1

and u2i = 2r−1; we have u2i−1 + u2i = 2r = w̄′
i because w′

i > 2r. If w2i−1 > 2r−1 and
w2i ≤ 2r−1 then let u2i−1 = 2r − w2i and u2i = w2i. By induction hypothesis we have
Gr(u1, . . . , uq) ⇐⇒ Gr(w1, . . . , wq). Furthermore, u2i−1 + u2i = w̄′

i, so Gr+1(w̄′
1, . . . , w̄

′
q′)

by definition of Gr+1.

Theorem 36 The decision problem for PABA is in STA(∗, 2O(n), n).

Proof. Consider a formula F0 of size n with S variables. Then α(F0) = GS+1. By Lemma 32,
size(α(F0)) is in 2O(n) and α(F0) has at most S quantifier alternations. By Lemma 35, it
suffices for the outermost quantified variable of α(F0) to range over the integer interval
[0, 2S], and the range of subsequent variables is even smaller. Therefore, the value of each
of the 2O(S) variables is given by O(S) bits. The values of all bound variables in α(F0)
can therefore be guessed in alternating time 2O(S) using S alternations. The truth value
of a PA formula for given values of variables can be evaluated in time polynomial in the
size of the formula, so deciding α(F0) can be done in STA(∗, 2O(n), S), which is bounded by
STA(∗, 2O(n), n).

7.5 Eliminating Individual Variables from a Formula

Section 7.3 described an algorithm for BAPA that reduces all set quantifiers in a BAPA

sentence to integer quantifiers. The advantage of such an algorithm is that it can be applied
to combinations of BA with extensions of PA that need not support quantifier elimination
(see Section 7.8.2). Moreover, this version of the algorithm made the complexity analysis
in Section 7.4 easier. However, as we discussed in Section 7.2.4, there are uses for an
algorithm that eliminates a quantified variable from a formula with free variables, yielding
an equivalent quantifier-free formula. In this section we explain that the individual step α1

of the algorithm α can be used for this purpose.

Quantifier elimination based on our algorithm is possible because PA itself admits quan-
tifier elimination. Therefore, after transforming a set quantifier into an integer quantifier,
we can remove the resulting integer quantifier and substitute back the variables constrained
by li = |si|. Denote this elimination of integer quantifiers by PAelim. Then the algorithm
α′, given by

separate ; α1 ; PAelim

eliminates one set or integer quantifier from a BAPA formula Qv.F , even if F contains
free variables (see also [158] for details). Lemma 27 again implies the correctness of this
approach.

Example. We illustrate the algorithm α′ on the example in Figure 7-11. We use the naming
convention given by the formula H for cardinalities of Venn regions from Figure 7-14. After
applying separate we obtain the formula

∃e. ∃+l000, . . . , l111. H ∧
l111 + l011 + l101 + l001 = 1 ∧
l100 = 0 ∧ l011 + l001 + l010 = 0

124

www.manaraa.com

After applying α1 we obtain the formula

∃l00, l01, l10, l11. l00 = |content′c ∩ contentc| ∧ l01 = |content′c ∩ content| ∧
l10 = |content′ ∩ contentc| ∧ l11 = |content′ ∩ content| ∧ G

where G is the PA formula

∃+l000, . . . , l111. l00 = l000 + l001 ∧ l01 = l010 + l011 ∧
l10 = l100 + l101 ∧ l11 = l110 + l111 ∧
l111 + l011 + l101 + l001 = 1 ∧
l100 = 0 ∧ l011 + l001 + l010 = 0

Applying quantifier elimination for PA and simplifications of the quantifier-free formula, we
reduce G to

l01 = 0 ∧ l10 ≤ 1 ∧ l11 + l10 ≥ 1

After substituting back the definitions of l00, . . . , l11 we obtain

|content′c ∩ content| = 0 ∧ |content′ ∩ contentc| ≤ 1 ∧

|content′ ∩ content|+ |content′ ∩ contentc| ≥ 1

which can indeed be simplified to the result in Figure 7-11.

7.5.1 Reducing the Number of Integer Variables

The approaches for deciding BAPA described so far always introduce 2S integer variables
where S is the number of set variables in the formula. We next describe observations
that, although not an improvement in the worst case, may be helpful for certain classes of
formulas.

First, as pointed out in [202], if the input formula entails any BA identities (which can
be represented as |b| = 0), then the number of non-empty Venn regions decreases, which
reduces the number of integer variables in the resulting PA formula, and eliminates such
atomic formulas b from further considerations.

Second, when eliminating a particular variable y, we can avoid considering Venn regions
with respect to all variables of the formula, and only consider those variables x for which
there exists an expression bi(x, y) where both x and y occur. This requires using a version
separate0 of separation that introduces integer variables only for those terms |b| that occur
in the BAPA formula that results from reducing any remaining BA atomic formulas to
the form |b| = 0. Like the form (7.1) obtained by separate in Section 7.3, the result of
separate0 contains a conjunction of formulas |bi| = li with a PA formula, with two important
differences 1) in the case of separate0 the resulting formula is polynomial in the original size
and 2) bi are arbitrary BA expressions as opposed to Venn regions. Let a1(y), . . . , aq(y) be
those terms bi that contain y, and let x1, . . . , xS1 be the free variables in a1(y), . . . , aq(y).
When eliminating quantifier Qy, it suffices to introduce 2S1 integer variables corresponding
to the the partitions with respect to x1, . . . , xS1 , which may be an improvement because
S1 ≤ S.

The final observation is useful if the number q of terms a1(y), . . . , aq(y) satisfies the
property 2q < S1, i.e. there is a large number of variables, but a small number of BA
terms containing them. In this case, consider all Boolean combinations t1, . . . , tu of the 2q
expressions a1(0), a1(1), a2(0), a2(1), . . . , aq(0), aq(1). For each ai, we have

ai(y) = (y ∩ ai(0)) ∪ (yc ∩ ai(1))

125

www.manaraa.com

Each ai(0) and each ai(1) is a disjoint union of cubes over the BA expressions t1, . . . , tu,
so each ai(y) is a disjoint union of cubes over the BA expressions y, t1, . . . , tu. It therefore
suffices to introduce 22q integer variables denoting all terms of the form y ∩ ti and yc ∩ ti,
as opposed to 2S1 integer variables.

7.6 Approximating HOL formulas by BAPA formulas

To make BAPA is applicable to a broader range of verification tasks, show how to approx-
imate higher-order logic formulas by BAPA formulas. As suggested in Section 4.2.3, our
system splits formulas into independent conjuncts, then attempts to approximates each
conjuct with a formula in a known fragment of logic.

Figure 7-15 presents one such approximation that maps HOL formulas to BAPA formu-
las. This approximation is sound for validity: when the resulting BAPA formula is valid, so
is the original BAPA formula. (The converse need not be the case because HOL formulas
are more expressive, allowing, in particular reasoning about relations.) The translation
function JfKb in Figure 7-15 translates an HOL formula or an expression f into a BAPA

formula, a BAPA set term or a BAPA integer term JfKb. The boolean parameter p keeps
track of the polarity of formulas to ensure sound approximation. We define 0 = 1 and 1 = 0.
The translation conservatively approximates formulas outside the scope of BAPA with the
truth value p. The correctness of the transformations is given by the relatioships

JfK0 |= f |= JfK1

which follows by induction, using the semantics of BAPA in Figure 7-15 and the mono-
tonicity of logical operations. The translation uses type information to disambiguate the
equality operator, which is polymorphic in our HOL notation and monomorphic in the BAPA

notation. The translation assumes that the formula has been type checked, and computes
the type typeof(f) of a subformula f using the types reconstructed by Hindley-Milner type
inference. The translation assumes that the input formula is flat, that is, that a previous
formula transformation pass flattened complex set and integer expressions by introducing
fresh variables. The translation changes the role of object variables, replacing them with
identically named variables that denote sets of cardinality one. This explains, for example,
the translation of atomic formulas x = {y} as x = y and x ∈ y as x ⊆ y. More robust
translations from the one in Figure 7-15 are possible. Nevertheless, the current translation
does show that BAPA can be easily integrated as a component of a reasoning procedure for
higher-order logic formulas arising in verification.

7.7 Experience Using Our Decision Procedure for BAPA

Using Jahob, we generated verification conditions for several Java program fragments that
require reasoning about sets and their cardinalities, for example, to prove the equality
between the set representing the number of elements in a list and the integer field size

after they have been updated, as well as several other examples from Section 7.2. We
found that the existing automated techniques were able to deal with some of the formulas
involving only sets or only integers, but not with the formulas that relate cardinalities of
operations on sets to the cardinalities of the individual sets. These formulas can be proved
in Isabelle, but require user interaction in terms of auxiliary lemmas. On the other hand,

126

www.manaraa.com

J K : HOL formulas→ BAPA formulas

Jf1 ∧ f2K
p ≡ Jf1K

p ∧ Jf2K
p

Jf1 ∨ f2K
p ≡ Jf1K

p ∨ Jf2K
p

J¬fKp ≡ ¬JfKp

Jf1 → f2K
p ≡ Jf1K

p → Jf2K
p

J∀k :: int. fKp ≡ ∀k.JfKp

J∃k :: int. fKp ≡ ∃k.JfKp

J∀x :: obj set. fKp ≡ ∀x.JfKp

J∃x :: obj set. fKp ≡ ∃x.JfKp

J∀x :: obj. fKp ≡ ∀x.|x| = 1→ JfKp

J∃x :: obj. fKp ≡ ∃x.|x| = 1 ∧ JfKp

Jx = cardinality yKp ≡ x = |y|

Jx < yKp ≡ x < y

Jx = yKp ≡ x = y, typeof(x) = int

Jx = c · tKp ≡ x = c · t

Jx = y + zKp ≡ x = y + z

Jx = y − zKp ≡ x = y + (−1) · z

Jc dvdxKp ≡ ∃k. x = c · k
Jx = yKp ≡ x = y, typeof(x) = obj set

Jx = yKp ≡ x = y, typeof(x) = obj

Jx = {y}Kp ≡ x = y, typeof(y) = obj

Jx = y ∪ zKp ≡ x = y ∪ z, typeof(x) = obj set

Jx = y ∩ zKp ≡ x = y ∩ z, typeof(x) = obj set

Jx = y \ zKp ≡ x = y ∩ zc, typeof(x) = obj set

Jx ⊆ yKp ≡ x ⊆ y, typeof(x) = obj set

Jx ∈ yKp ≡ x ⊆ y, typeof(x) = obj

Jx = ∅Kp ≡ x = 0, typeof(x) = obj set

Jx = UKp ≡ x = 1, typeof(x) = obj set

JfK0 ≡ false, if none of the previous cases apply

JfK1 ≡ true, if none of the previous cases apply

Figure 7-15: Approximation of HOL by BAPA

127

www.manaraa.com

our implementation of the decision procedure automatically discharges these formulas.

Our initial experience indicates that a straightforward implementation of the algorithm
α works fast as long as the number of set variables is small; typical timings are fractions
of a second for 4 or less set variables and less than 10 seconds for 5 variables. More than
5 set variables cause the PA decision procedure to run out of memory. On the other hand,
the decision procedure is much less sensitive to the number of integer variables in BAPA

formulas, because they translate into the same number of integer variables in the generated
PA formula. We used the Omega Calculator to decide PA formulas because we found that it
outperforms LASH on the formulas generated from our examples. For quantifier-free BAPA

formulas we have also successfully used CVC Lite to prove the resulting quantifier-free PA

formulas.

Our current implementation makes use of certain formula transformations to reduce the
size of the generated PA formula. We found that eliminating set variables by substitution
of equals for equals is an effective optimization. We also observed that lifting quantifiers
to the top level noticeably improves the performance of the Omega Calculator. These
transformations extend the range of formulas that the current implementation can handle.
A possible alternative to the current approach is to interleave the elimination of integer
variables with the elimination of the set variables, and to perform formula simplifications
during this process. Finally, once we obtain a formula with only existential quantifiers, we
can decide its satisfiability more efficiently using the recent improvements for quantifier-free
formulas (Section 7.9).

7.8 Further Observations

We next sketch some further observations about BAPA. First we show that the restriction
of BAPA to finite sets is not necessary. We then clarify key differences and connections
between BAPA and monadic second-order logic over trees.

7.8.1 BAPA of Countably Infinite Sets

Note that our results also extend to the generalization of BAPA where set variables range
over subsets of an arbitrary (not necessarily finite) set, which follows from the decidability
of the first-order theory of the addition of cardinals [90, Page 78]; see [266, Appendix A]
for the complexity of the quantifier-free case. For simplicity of formula semantics, we here
consider only the case of all subsets of a countable set, and argue that the complexity results
we have developed above for the finite sets still apply. We first generalize the language of
BAPA and the interpretation of BAPA operations, as follows. Introduce a function inf(b)
which returns 0 if b is a finite set and 1 if b is an infinite set. Define |b| to be some arbitrary
integer (for concreteness, zero) if b is infinite, and the cardinality of b if b is finite. A
countable or a finite cardinal can therefore be represented in PA using a pair (k, i) of an
integer k and an infinity flag i, where we put k = 0 when i = 1. The relation representing
the addition of cardinals (k1, i1) + (k2, i2) = (k3, i3) is then definable by formula

(i1 = 0 ∧ i2 = 0 ∧ i3 = 0 ∧ k1 + k2 = k3) ∨ ((i1 = 1 ∨ i2 = 1) ∧ i3 = 1 ∧ k3 = 0)

Note that inf(x) = max(inf(x ∩ y), inf(x ∩ yc)), which allows the reduction of all occurrences
of inf(b) expressions to occurrences where b is a Venn region. Moreover, we have the following
generalization of Lemma 26.

128

www.manaraa.com

Lemma 37 Let b1, . . . , bn be disjoint sets, l1, . . . , ln, k1, . . . , kn be natural numbers, and
p1, . . . , pn, q1, . . . , qn ∈ {0, 1} for 1 ≤ i ≤ n. Then the following two statements are equiva-
lent:

1. There exists a set y such that

n
∧

i=1

|bi ∩ y| = ki ∧ inf(bi ∩ y) = pi ∧ |bi ∩ y
c| = li ∧ inf(bi ∩ y

c) = qi

2. n
∧

i=1

(pi = 0 ∧ qi = 0→ |bi| = ki + li) ∧
(inf(bi) = 0↔(pi = 0 ∧ qi = 0)) ∧
(pi = 1→ ki = 0) ∧ (qi = 1→ li = 0)

Proof. The case when pi = 0 and qi = 0 follows as in the proof of Lemma 26. When pi = 1
or qi = 1 then bi contains an infinite set as a subset, so it must be infinite. Conversely, an
infinite set can always be split into a set of the desired size and another infinite set, or into
two infinite sets.

The BAPA decision procedure for the case of countable set then uses Lemma 37 and
generalizes the algorithm α in a natural way. The resulting PA formulas are at most poly-
nomially larger than for the case of finite sets, so we obtain a generalization of Theorem 34
to subsets of a countable set.

7.8.2 BAPA and MSOL over Strings

The weak monadic second-order logic (MSOL) over strings is a decidable logic [235, 119]
that can encode Presburger arithmetic by encoding addition using one successor symbol
and quantification over sets of elements. There are two important differences between
MSOL over strings and BAPA: (1) BAPA can express relationships of the form |A| = k
where A is a set variable and k is an integer variable; such relation is not definable in
MSOL over strings; (2) when MSOL over strings is used to represent PA operations, the
sets contain binary integer digits whereas in BAPA the sets contain uninterpreted elements.
Note also that MSOL extended with a construct that takes a set of elements and returns
an encoding of the size of that set is undecidable, because it could express MSOL with
equicardinality, which is undecidable by a reduction from Post correspondence problem.
Despite this difference, the algorithm α gives a way to combine MSOL over strings with
BA yielding a decidable theory. Namely, α does not impose any upper bound on the
complexity of the theory for reasoning about integers. Therefore, α can decide an extension
of BAPA where the constraints on cardinalities of sets are expressed using relations on
integers definable in MSOL over strings; these relations go beyond PA [236, Page 400], [43].

7.9 Quantifier-Free BAPA is NP-complete

This section shows that the satisfiability problem for quantifier-free fragment of BAPA, de-
noted QFBAPA, is NP-complete. QFBAPA satisfiability is clearly NP-hard, because QFBAPA

has propositional operators on formulas. Moreover, QFBAPA contains Boolean algebra of
sets that has its own propositional structure. The challenge is therefore to prove member-
ship in NP, given formulas such as |A \B ∪C| = 10000, which can force the sizes of sets to
be exponential, leading to a doubly exponential number of interpretations of set variables.

129

www.manaraa.com

F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F

A ::= B1 = B2 | B1 ⊆ B2 | T1 = T2 | T1 < T2 | K dvdT

B ::= x | 0 | 1 | B1 ∪B2 | B1 ∩B2 | B
c

T ::= k | K | MAXC | T1 + T2 | K · T | |B|

K ::= . . .−2 | −1 | 0 | 1 | 2 . . .

Figure 7-16: Quantifier-Free Boolean Algebra with Presburger Arithmetic (QFBAPA)

Motivation for QFBAPA. Note that a consequence of the quantifier elimination property
of BAPA is that QFBAPA formulas define the same class of relations on sets and integers as
BAPA formulas, so they essentially have the same expressive power. In general, QFBAPA

formulas may be exponentially larger than the corresponding quantified BAPA formulas.
However, it is often the case that the proof obligation (or other problem of interest) is already
expressed in quantifier-free form. It is therefore interesting to consider the complexity of
the satisfiability problem for QFBAPA.

Quantifier-free Presburger arithmetic. Quantifier-free PA is in NP because it has a
small model property implying that satisfiable formulas have solutions whose binary rep-
resentation is polynomial. The small model property for quantifier-free PA follows from
the small model property for conjunctions of atomic formulas, which in turn follows from
bounds on solutions of integer linear programming problems [206]. In practice, quantifier-
free PA formulas can be solved using implementations such as CVC Lite [30] and UCLID
[162].

Previous algorithms for QFBAPA. Existing algorithms for QFBAPA [266, 221, 202] run
in non-deterministic exponential time, because they explicitly introduce a variable for each
Venn region. The same exponential explosion occurs in our algorithm α [153, 154, 158]
described in Section 7.3: when applied to a QFBAPA formula F , the algorithm α produces
an exponentially large quantifier-free PA formula α(F). Quantifier-free PA is NP-complete,
so checking satisfiability of α(F) will take non-deterministic exponential time in the size of
F .

My result. I have previously used a divide-and-conquer algorithm to show that it is not
necessary to simultaneously generate all Venn region variables, proving that QFBAPA is in
PSPACE [180, Section 3]. I here give a stronger result, which shows that QFBAPA is in NP.
In the process, I identify a natural encoding of QFBAPA formulas into polynomially-sized
quantifier-free PA formulas. In my argument I use a recent result [86] that if an element is in
an integer cone generated by a set of vectors X, then it is also in an integer cone generated
by a “small” subset of X. This result implies that a system of equations with bounded coef-
ficients, if satisfiable, has a sparse solution with only polynomially many non-zero variables,
even if the number of variables in the system is exponential. As a result, instead of using
exponentially many Venn region cardinality variables to encode relationships between sets,
we can use polynomially many “generic” variables along with polynomially many indices
that determine which Venn region cardinality each generic variable represents. In other
words, every satisfiable QFBAPA formula has a witness of polynomial size, which indicates
the values of integer variables in the original QFBAPA formula, lists the Venn regions that
are non-empty, and indicates the cardinalities of these regions.

130

www.manaraa.com

7.9.1 Constructing Small Presburger Arithmetic Formulas

Given a QFBAPA formula, this section shows how to construct a small quantifier-free Pres-
burger Arithmetic formula. Section 7.9.2 then proves that this formula is equisatisfiable
with the original one.

Figure 7-16 shows a context-free grammar for QFBAPA, which simply omits the quan-
tifiers from the full BAPA grammar in Figure 7-4. We first separate PA and BA parts as in
Section 7.3, by replacing b1 = b2 with b1 ⊆ b2 ∧ b2 ⊆ b1, replacing b1 ⊆ b2 with |b1 ∩ bc2| = 0,
and then introducing integer variables ki for all cardinality expressions |bi| occurring in the
formula. With a constant increase in size, we obtain an equisatisfiable QFBAPA formula of
the form G ∧ F where G is a quantifier-free PA formula and F is of the form

p
∧

i=0

|bi| = ki (7.5)

We assume that b0 = 1 and k0 = MAXC, i.e., that the first constraint is |1| = MAXC

and establishes the relationship between the universal set 1 and the maximal cardinality
variable MAXC.

Let y1, . . . , ye be the set variables in b1, . . . , bp. If we view each Boolean algebra formula
bi as a propositional formula, then for β = (p1, . . . , pe) where pi ∈ {0, 1} let JbiKβ ∈ {0, 1}
denote the truth value of bi under the propositional valuation assigning the truth value
pi to the variable yi. Let further sβ denote the Venn region associated with β, given by
sβ = ∩e

j=1y
pj

j where y0
j = yc

j is set complement and y1
j = yj. We then have |bi| =

∑

β|=bi
|sβ|.

For the sake of analysis, for each β ∈ {0, 1}e introduce a non-negative integer variable lβ
denoting |sβ|. Then (7.5) is equisatisfiable with the exponentially larger PA formula

p
∧

i=0

∑

{

lβ | β ∈ {0, 1}
e ∧ JbiKβ=1

}

= ki (7.6)

Instead of this exponentially large formula where β ranges over all 2e propositional assign-
ments, we will check the satisfiability of a smaller formula

G ∧

p
∧

i=0

∑

{

lβ | β ∈ {β1, . . . , βN} ∧ JbiKβ=1
}

= ki (7.7)

where β ranges over a set of N assignments β1, . . . , βN for βi = (pi1, . . . , pie) and pij are
fresh free variables ranging over {0, 1}. Let d = p+ 1. We are interested in the best upper
bound N(d) on the number of non-zero Venn regions over all possible systems of equations.
In the sequel we show that N(d) is polynomial and therefore polynomial in the size of the
original QFBAPA formula. This result will prove that QFBAPA is in NP and give an effective
bound on how to construct a quantifier-free PA formula for checking the satisfiability of a
given QFBAPA formula.

Some details on PA encoding of QFBAPA. We next provide some details on the encoding
of the formula (7.7) in quantifier-free PA, to convince the reader that the resulting formula
is indeed polynomially large as long as N is polynomial in d. Let cij = JbiKβj

for 1 ≤ i ≤ p

and 1 ≤ j ≤ N . Then we need to express in quantifier-free PA the sum
∑N

j=1 cij lβj
= ki.

It suffices to show how to efficiently express sums with boolean variable (as opposed to
constant) coefficients. We illustrate this encoding for our particular example. Introduce a

131

www.manaraa.com

variable sij whose purpose is to store the value of the partial sum sij =
∑j

k=1 ciklβk
. We

introduce formula si0 = 0 as well as

(p ↔ J⌈bi⌉Kβj
) ∧

(p → sij = si(j−1) + lβj
) ∧

(¬p → sij = si(j−1))
(Dij)

where J⌈bi⌉Kβj
denotes the propositional formula corresponding to bi with propositional

variables of βj substituted for the corresponding sets. We therefore obtain dN polynomially
sized expressions (Dij), so if N is polynomial in d, the entire formula (7.7) is polynomial.

7.9.2 Upper Bound on the Number of Non-Zero Venn Regions

We next prove that the number of non-zero Venn regions can be assumed to be polynomial
in d. Let Z denote the set of integers and Z≥0 denote the set of non-negative integers. We
write

∑

X for
∑

y∈X

y.

Definition 38 For X ⊆ Z
d a set of integer vectors, let

int cone(X) = {λ1x1 + . . .+ λtxt | t ≥ 0 ∧ x1, . . . , xt ∈ X ∧ λ1, . . . , λn ∈ Z≥0}

denote the set of all non-negative integer linear combination of vectors from X.

To prove the bound on the number N of non-empty Venn regions from Section 7.9.1,
we use a variation of the following result, established as Theorem 1(ii) in [86].

Fact 3 (Eisenbrand, Shmonina (2005)) Let X ⊆ Z
d be a finite set of integer vectors

and M = max{(maxd
i=1 |x

i
j |) | (x

1
j , . . . , x

d
j) ∈ X} be the bound on the coordinates of vectors

in X. If b ∈ int cone(X), then there exists a subset X̃ ⊆ X such that b ∈ int cone(X̃) and
|X̃ | ≤ 2d log(4dM).

To apply Fact 3 to formula (7.6), let X = {xβ | β ∈ {0, 1}
e} where xβ ∈ {0, 1}

e is given by

xβ = (Jb0Kβ, Jb1Kβ, . . . , JbeKβ).

Fact 3 implies is that if (k0, k1, . . . , kp) ∈ int cone(X) where ki are as in formula (7.6),
then (k0, k1, . . . , kp) ∈ int cone(X̃) where |X̃ | = 2d log(4d) (note that M = 1 because xβ

are {0, 1}-vectors). The subset X̃ corresponds to selecting a polynomial subset of N Venn
region cardinality variables lβ and assuming that the remaining ones are zero. This implies
that formulas (7.6) and (7.7) are equisatisfiable.

A direct application of Fact 3 yields N = 2d log(4d) bound, which is sufficient to prove
that QFBAPA is in NP. However, because this bound is not tight, in the sequel we prove
results that slightly strengthen the bound and provide additional insight into the problem.

7.9.3 Properties of Nonredundant Integer Cone Generators

Definition 39 Let X be a set of integer vectors. We say that X is a nonredundant integer
cone generator for b, and write NICG(X, b), if b ∈ int cone(X), and for every y ∈ X,
b /∈ int cone(X \ {y}).

132

www.manaraa.com

Lemma 40 says that if NICG(X, b) for some b, then the sums of vectors
∑

Y for Y ⊆ X
are uniquely generated elements of int cone(X).

Lemma 40 Suppose NICG(X, b). If λ1, λ2 : X → Z≥0 are non-negative integer coefficients
for vectors in X such that

∑

x∈X

λ1(x)x =
∑

x∈X

λ2(x)x (7.8)

and λ1(x) ∈ {0, 1} for all x ∈ X, then λ2 = λ1.

Proof. Suppose NICG(X, b), λ1, λ2 : X → Z≥0 are such that (7.8) holds and λ1(x) ∈ {0, 1}
for all x ∈ X, but λ2 6= λ1. If there are vectors x on the left-hand side of (7.8) that
also appear on the right-hand side, we can cancel them. We obtain an equality of the
form (7.8) for distinct λ′1, λ

′
2 with the additional property that λ′1(x) = 1 implies λ′2(x) = 0.

Moreover, not all λ′1(x) are equal to zero. By b ∈ int cone(X), let λ : X → Z≥0 be such that
b =

∑

x∈X λ(x)x. Let x0 be such that λ′1(x0) = min{λ(x) | λ′1(x) = 1}. By construction,
λ′1(x0) = 1 and λ′2(x0) = 0. We then have, with x in sums ranging over X:

b =
∑

λ′

1(x)=1

λ(x)x+
∑

λ′

1(x)=0

λ(x)x

=
∑

λ′

1(x)=1

(λ(x)− λ(x0))x+ λ(x0)
∑

λ′

1(x)=1

x+
∑

λ′

1(x)=0

λ(x)x

=
∑

λ′

1(x)=1

(λ(x)− λ(x0))x+ λ(x0)
∑

λ′2(x)x+
∑

λ′

1(x)=0

λ(x)x

In the last sum, the coefficient next to x0 is zero in all three terms. We conclude b ∈
int cone(X \ {x0}), contradicting NICG(X, b).

We write NICG(X) as a shorthand for NICG(X,
∑

X). Theorem 41 gives several equiv-
alent characterizations of NICG(X).

Theorem 41 Let X ⊆ {0, 1}d. The following statements are equivalent:

1) there exists a vector b ∈ Z
d
≥0 such that NICG(X, b);

2) If λ1, λ2 : X → Z≥0 are non-negative integer coefficients for vectors in X such that

∑

x∈X

λ1(x)x =
∑

x∈X

λ2(x)x

and λ1(x) ∈ {0, 1} for all x ∈ X, then λ2 = λ1.

3) For {x1, . . . , xn} = X (for x1, . . . , xn distinct), the system of d equations expressed in
vector form as

λ(x1)x1 + . . .+ λ(xn)xn =
∑

X (7.9)

has (λ(x1), . . . , λ(xn)) = (1, . . . , 1) as the unique solution in Z
n
≥0.

4) NICG(X).

Proof.
1)→ 2): This is Lemma 40.
2)→ 3): Assume 2) and let λ1(xi) = 1 for 1 ≤ i ≤ n. For any solution λ2 we then have

∑

x∈X λ1(x)x =
∑

x∈X λ2(x)x, so λ2 = λ1. Therefore, λ1 is the unique solution.

133

www.manaraa.com

3)→ 4): Assume 3). Clearly
∑

X ∈ int cone(X); it remains to prove that X is minimal.
Let y ∈ X. For the sake of contradiction, suppose

∑

X ∈ int cone(X \ {y}). Then there
exists a solution λ(x) for (7.9) with λ(y) = 0 6= 1, a contradiction with the uniqueness of
the solution.

4)→ 1): Take b =
∑

X.

Corollary 42 is used in [86] to establish the bound on the size of X with NICG(X). We
obtain it directly from Lemma 40 taking λ2(x) ∈ {0, 1}.

Corollary 42 If NICG(X) then for Y1, Y2 ⊆ X, Y1 6= Y2 we have
∑

Y1 6=
∑

Y2.

The following lemma says that it suffices to establish bounds on the cardinality of X
such that NICG(X), because they give bounds on all X.

Lemma 43 If b ∈ int cone(X), then there exists a subset X̃ ⊆ X such that b ∈ int cone(X̃)
and NICG(X̃, b).

Proof. If b ∈ int cone(X) then by definition b ∈ int cone(X0) for a finite X0 ⊆ X. If not
NICG(X0, b), then b ∈ int cone(X1) where X1 is a proper subset of X0. Continuing in this
fashion we obtain a sequence X0 ⊃ X1 ⊃ . . . ⊃ Xk where k ≤ |X0|. The last element Xk

satisfies NICG(Xk, b).

Moreover, the property NICG(X) is hereditary, i.e. it applies to all subsets of a set that
has it.3

Lemma 44 If NICG(X) and Y ⊆ X, then NICG(Y).

Proof. Suppose that NICG(X) and Y ⊆ X but not NICG(Y,
∑

Y). Because
∑

Y ∈ int cone(X), there is z ∈ Y such that
∑

Y ∈ int cone(Y \ {z}). Then also
∑

Y ∈ int cone(X \ {z}), contradicting Lemma 40.

The following theorem gives our bounds on |X|. As in [86], we only use Corollary 42
instead of the stronger Lemma 40, suggesting that the bound is not tight.

Theorem 45 Let X ⊆ {0, 1}d and NICG(X). Then

|X| ≤ (1 + ε(d))(d log d) (7.10)

where ε(d) ≤ 1 for all d ≥ 1, and lim
d→∞

ε(d) = 0.

Proof. Let X ⊆ {0, 1}d, NICG(X) and N = |X|. We first prove 2N ≤ (N + 1)d. Suppose
that, on the contrary, 2N > (N + 1)d. If

∑

Y = (x1, . . . , xd) for Y ⊆ X, then 0 ≤ xj ≤ N
because Y ⊆ {0, 1}d and |Y | ≤ N . Therefore, there are only (N + 1)d possible sums

∑

Y .
Because there are 2N subsets Y ⊆ X, there exist two distinct subsets U, V ∈ 2X such that
∑

U =
∑

V . This contradicts Corollary 42. Therefore, 2N ≤ (N+1)d, so N ≤ d log(N+1).
We first show that this implies N ≤ 2d log(2d). We show the contrapositive. Suppose

N > 2d log(2d). Then N
2d
> log(2d) from which we have:

1 <
2

N
2d

2d
(7.11)

3 The reader familiar with matroids [250] might be interested to know that, for d ≥ 4, the family of
sets {X ⊆ {0, 1}d | NICG(X)} is not a matroid, because it contains multiple subset-maximal elements of
different cardinality.

134

www.manaraa.com

Moreover, d ≥ 1 so N
2d
> log(2d) ≥ log 2 = 1, which implies

log(1 +
N

2d
) ≤

N

2d
(7.12)

From (7.11) and (7.12) we have, similarly to [86],

d log(N + 1) < d log(N 2
N
2d

2d
+ 1) = d log(2

N
2d (N

2d
+ 2−

N
2d)) < d log(2

N
2d (N

2d
+ 1))

= d(N
2d

+ log(1 + N
2d

)) < d(N
2d

+ N
2d

) = N.

By contraposition, from N ≤ d log(N + 1) we conclude N ≤ 2d log(2d). Substituting this
bound on N back into N ≤ d log(N + 1) we obtain

N ≤ d log(N + 1) ≤ d log(2d log(2d) + 1) = d log(2d(log(2d) + 1
2d

))

= d(1 + log d+ log(log(2d) + 1
2d

)) = d log d(1 +
1+log(log(2d)+ 1

2d
)

log d
)

so we can let

ε(d) =
1 + log(log d+ 1 + 1

2d
)

log d
.

It may be of interest for problems arising in practice that, for d ≤ 23170 we have ε(d) ≤ 5
log d

and thus N ≤ d(log d+ 5).

We can now define the function whose bounds we are interested in computing.

Definition 46 N(d) = max{|X| | X ⊆ {0, 1}d,NICG(X)}

Theorem 45 implies N(d) ≤ (1 + ε(d))(d log d).

7.9.4 Notes on Lower Bounds and Set Algebra with Real Measures

While we currently do not have a tight lower bound on N(d), in this section we show, in
sequence, the following:

1. d ≤ N(d) for all d;

2. NR(d) = d if we use real variables instead of integer variables;

3. N(d) = d for d ∈ {1, 2, 3};

4. for d+
⌊

d
4

⌋

≤ N(d) for 4 ≤ d.

We first show d ≤ N(d).

Lemma 47 Let X = {(x1
i , . . . , x

d
i) | 1 ≤ i ≤ n} and

X+ = {(x1
i , . . . , x

d
i , 0) | 1 ≤ i ≤ n} ∪ {(0, . . . , 0, 1)}

Then NICG(X) if and only if NICG(X+).

Corollary 48 N(d) + 1 ≤ N(d+ 1) for all d ≥ 1.

135

www.manaraa.com

Proof. Let X ⊆ {0, 1}d, NICG(X), and |X| = N(d). Then NICG(X+) by Lemma 47 and
|X+| = N(d) + 1, which implies N(d+ 1) ≥ N(d) + 1.

Note that we have N(1) = 1 because there is only one non-zero {0, 1} vector in one
dimension. From Corollary 48 we obtain our lower bound, with standard basis as NICG.

Lemma 49 d ≤ N(d). Specifically, NICG({e1, . . . , ed}).

Note that for X = {e1, . . . , ed} we have int cone(X) = Z
d
≥0, which implies that X is a

maximal NICG, in the sense that no proper superset W ⊃ X for W ⊆ {0, 1}d has the
property NICG(W).

Real-valued relaxation of QFBAPA. It is interesting to observe that, for a variation of
the QFBAPA problem over real numbers, which we call QFBALA (Quantifier-Free Boolean
Algebra with Linear Arithmetic), we have N ′(d) = d as a lower and upper bound for every
d.

We define QFBALA similarly as QFBAPA, but we use real (or rational) linear arithmetic
instead of integer linear arithmetic and we interpret |A| is some real-valued measure of
the set A. A possible application of QFBALA are generalizations of probability consistency
problems such as [34, Page 385, Example 8.3]. Set algebra operations then correspond to
the σ-algebra of events, and the measure of the set is the probability of the event. Another
model of QFBALA is to interpret sets as finite disjoint unions of intervals contained in [0, 1],
and let |A| be the sum of the lengths of the disjoint intervals making up A.

The conditions we are using on the models is a version of Lemma 26: 1) for two disjoint
sets A,B, we have |A ∪ B| = |A| + |B|, and 2) if |C| = p and 0 ≤ q ≤ p, then there exists
B ⊆ C such that |B| = q. (In addition, if the model allows |A| = 0 for A 6= ∅, then we
introduce an additional propositional variable for each Venn region variable to track its
emptiness, similarly to the set infinity flags from Section 7.8.1.)

We can reduce the satisfiability of QFBALA to the satisfiability of a quantifier-free linear
arithmetic formula over reals and a formula of the form (7.6) but with lβ non-negative real
values instead of integer values. We then reduce formula (7.6) to a formula of the form (7.6).
The question is then, what can we use as the bound N ′(d) for QFBALA problems? This
question reduces to following. Define convex cone generated by a set of vectors by

cone(X) = {λ1x1 + . . .+ λtxt | t ≥ 0 ∧ x1, . . . , xt ∈ X ∧ λ1, . . . , λn ≥ 0}

where λ1, . . . , λn ∈ R are non-negative real coefficients. If b ∈ cone(X), what bound can
we put on the cardinality of a subset X̃ ⊆ X such that X ∈ cone(X̃)? Note that d is a
lower bound, using the same example of unit vectors as X. In the case of real numbers,
Carathéodory’s theorem [63] states that d is an upper bound as well: b ∈ cone(X̃) for some
X̃ of cardinality at most d. We can also explain that N ′(d) = d using the terminology of
linear programming [227]. The equations (7.6) along with lβ ≥ 0 for β ∈ {0, 1}e determine
a polytope in R

2e
, so if they have a solution, they have a solution that is a vertex of the

polytope. The vertex in R
2e

is the intersection of 2e hyperplanes, of which at most d are
given by (7.6), so the remaining ones must be hyperplanes of the form lβ = 0. This implies
that at least 2e−d coordinates of the vertex are zero and at most d of them can be non-zero.

Note that the linear arithmetic formula in Figure 7-13 is valid not only over integers
but also over real numbers. The negation of this formula is a linear programming problem
that is unsatisfiable over not only integers but also over reals. In that sense, QFBALA is a

136

www.manaraa.com

relaxation of QFBAPA, and can be used as a sound (but incomplete) method for proving
the absence of solutions of a QFBAPA formula.

N(d) = d for d ∈ {1, 2, 3}. We next show that for d ∈ {1, 2, 3} not only d ≤ N(d) but
also N(d) ≤ d.

Lemma 50 N(d) = d for d ∈ {1, 2, 3}.

Proof. By Corollary 48, if N(d+ 1) = d+ 1, then N(d) + 1 ≤ d+ 1 so N(d) ≤ n. Therefore,
N(d) = 3 implies N(2) = 2 as well, so we can take d = 3.

If N(d) > d, then there exists a set X with NICG(X) and |X| > d. From Lemma 44, a
subset X0 ⊆ X with |X| = d+1 also satisfies NICG(X0). Therefore, N(3) = 3 is equivalent
to showing that there is no set X ⊆ {0, 1}3 with NICG(X) and |X| = 4.

Consider a possible counterexample X = {x1, x2, x3, x4} ⊆ {0, 1}
3 with b ∈ X. By

previous argument on real-value relaxation, N ′(3) = 3, so b is in convex cone of some three
vectors from X, say b ∈ cone({x1, x3, x3}). On the other hand, b /∈ int cone({x1, x3, x3}).
If we consider a system λ1x1 + λ2x2 + λ3x3 = b this implies that such system has solution
over non-negative reals, but not over non-negative integers. This can only happen if in the
process of Gaussian elimination we obtain coefficients whose absolute value is more than 1.
The only set of three vectors for which this can occur is X1 = {(0, 1, 1), (1, 0, 1), (1, 1, 0)}
We then consider all possibilities for the fourth vector in X, which, modulo symmetry of
coordinates are (0, 0, 0), (1, 1, 1), (1, 1, 0), and (1, 0, 0). However, adding any of these vectors
violates the uniqueness of the solution to λ1x1 + λ2x2 + λ3x3 + λ4x4 =

∑

X, so NICG(X)
does not hold by Theorem 41, condition 3).

N = 5

4
d − 3

4
lower bound. I next show that there exists an example X5 ⊆ {0, 1}

4 with
NICG(X5) and |X5| = 5. From this it follows that N(d) > d for all d ≥ 4.

Consider the following system of 4 equations with 5 variables, where all variable co-
efficients are in {0, 1}. (I found this example by narrowing down the search using the
observations on minimal counterexamples in the proof of Lemma 50.)

λ1 + λ2 + λ3 = 3

λ2 + λ3 + λ4 = 3

λ1 + λ3 + λ4 + λ5 = 4

λ1 + λ2 + λ4 + λ5 = 4

(7.13)

Performing Gaussian elimination yields an equivalent upper-triangular system

λ1 + λ2 + λ3 = 3

λ2 + λ3 + λ4 = 3

λ3 + 2λ4 + λ5 = 4

3λ4 + 2λ5 = 5

From this form it easy to see that the system has (λ1, λ2, λ3, λ4, λ5) = (1, 1, 1, 1, 1) as the
only solution in the space of non-negative integers. Note that all variables are non-zero in
this solution. (In contrast, as discussed above, because the system is satisfiable, it must have
a solution in non-negative reals where at most 4 coordinates are non-zero; an example of such
solution is (λ1, λ2, λ3, λ4, λ5) = (0, 1.5, 1.5, 0, 2.5).) The five columns of the system (7.13)

137

www.manaraa.com

correspond to the set of vectors X5 = {(1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0), (0, 1, 1, 1), (0, 0, 1, 1)}
such that NICG(X5). The set X5 is also a maximal NICG, because adding any of the
remaining 9 non-zero vectors in {0, 1}4 \X5 results in a set that is not NICG.

Using k identical copies of X5 (with 4 equations in a group mentioning a disjoint set of
5 variables) we obtain systems of 4k equations with 5k variables such that the only solution
is a vector (1, . . . , 1) of all ones. By adding p unit vector columns for 1 ≤ p ≤ 3, we also
obtain systems of 4k + p equations with 5k + p variables, with

N =
5

4
d−

p

4
= d+

⌊

d

4

⌋

≥
5

4
d−

3

4

which, in particular, shows that N = d upper bound is invalid for all d ≥ 4.
This argument shows that there exist maximal NICG of size larger than d for d ≥ 4. As

we have remarked before, the set of d unit vectors is a maximal NICG for every d, which
means that, unlike linearly independent sets of vectors over a field or other independent
sets in a matroid [250], there are maximal NICG sets of different cardinality.

Note also that X5 is not a Hilbert basis [229]. Namely (1, 1, 1, 1) ∈ cone(X5) \
int cone(X5) because (1, 1, 1, 1) = 1/3((1, 0, 1, 1) + (1, 1, 0, 1) + (1, 1, 1, 0) + (0, 1, 1, 1)). This
illustrates why previous results on Hilbert bases do not directly apply to the notion of
NICG.

7.9.5 A decision procedure for QFBAPA

Using Theorem 45 we obtain a non-deterministic polynomial-time algorithm for checking
QFBAPA satisfiability. For formulas generated from verification, it is likely that a QFBAPA

decision procedure implementation can effectively use bounds smaller than (1 + ε(d))d log d
to find counterexamples and to prove their absence, as follows.

1. Attempt to find counterexamples for small N . If a counterexample for any N is
found, it is a valid counterexample. One could expect that such counterexamples
would often be found by “small scope hypothesis” [131] for typical formulas arising in
software verification.

2. If no counterexample is found for small N , then the decision procedure can use the
bound N = d with real linear arithmetic and try to prove the absence of solutions.
No solutions found means that the original QFBAPA problem has no solutions either.
The example in Figure 7-13 and the experience from [82, Section 8] suggest that this
approach would often succeed in proving the absence of solutions for unsatisfiable
QFBAPA formulas.

3. Finally, if a solution is found in real numbers but not for small N in integers, then the
system can use the bound N = (1 + ε(d))d log d, which gives a definite answer thanks
to Theorem 45.

The first two steps can be viewed as heuristics for finding the answer faster in common
cases; their usefulness remains to be experimentally evaluated.

7.10 Related Work

Our result in Section 7.4 is the first complexity bound for the first-order theory of BAPA.
A preliminary version of this result appears in [153, 158] and most of the content of this

138

www.manaraa.com

chapter is presented in [154]. The decidability for BAPA, presented as BA with equicar-
dinality constraints was shown in [90], see Section 7.1. A decision procedure for a special
case of BAPA was presented in [265], which allows only quantification over elements but not
over sets of elements. [202] also examines quantifier-free formulas and show how to combine
quantifier-free BA constraints with additional constraints using “bridging functions”. Bridg-
ing functions satisfy homomorphism-like properties and generalize the cardinality operator;
we expect that the quantifier-elimination techniques of this chapter can be generalized in
this direction as well. An interesting case of a bridging function is a probability measure
of a set, which arises in probability consistency problems such as [34, Page 385, Example
8.3]. Our observations in Section 7.9 imply that a very general version of a probability con-
stency problem that allows arbitrary expressions for intersection, union, and completement
of events is in NP and therefore NP-complete.

[221] presents quantifier elimination and the decidability of a single-sorted version of
BAPA that only contains the set sort. Note that bound integer variables can be simulated
using bound set variables, but there are notational and clear efficiency reasons to allow
integer variables in BAPA.

To our knowledge, our result in Section 7.9 is the only decision procedure for a logic with
sets and cardinality constraints that does not explicitly construct all set partitions. Using
a new form of small model property, the “small number of non-zero variables property”, we
obtained a non-deterministic polynomial-time algorithm that can be solved by producing
polynomially large quantifier-free Presburger arithmetic formulas. A polynomial bound
sufficient for our result can be derived from [86]. In addition to slight improvements in the
bounds, in Section 7.9 we suggest that there is an interesting structure behind these bounds.
We introduced the notion of nonredundant integer cone generators and proved additional
results that may help us understand their properties and eventually establish tight bounds
on their size. We note that previous results such as [229] consider matroids and Hilbert
bases. In contrast, nonredundant integer cone generators are the natural notion for our
problem. As we remark in Section 7.9.4, the sets of vectors X with NICG(X) do not form a
matroid, and maximal NICG(X) need not be a Hilbert basis. Note also that the equations
generated from QFBAPA problems are more difficult than set packing and set partitioning
problems [22] because integer variables are not restricted to be {0, 1}.

Presburger arithmetic. The original result on decidability of PA is [212]. The space
bound for PA was shown in [91]. The matching lower and upper bounds for PA were
shown in [32], see also [145, Lecture 24]. An analysis parameterized by the number of
quantifier alternations is presented in [217]. Our implementation uses quantifer-elimination
based Omega test [215]. Among the decision procedures for full PA, [50] is the only proof-
generating version, and is based on [64]. Decidable fragments of arithmetic that go beyond
PA are described in [42, 43].

Reasoning about Sets. The first results on decidability of BA of sets are from [176],
[3, Chapter 4] and use quantifier elimination, from which one can derive small model prop-
erty. [145] gives the complexity of the satisfiability problem for arbitrary BA. [182] study
unification in Boolean rings. The quantifier-free fragment of BA is shown NP-complete
in [181]; see [160] for a generalization of this result using the parameterized complexity
of the Bernays-Schönfinkel-Ramsey class of first-order logic [37, Page 258]. [48] gives an
overview of several fragments of set theory including theories with quantifiers but no cardi-
nality constraints and theories with cardinality constraints but no quantification over sets.
The decision procedure for quantifier-free fragment with cardinalities in [48, Chapter 11]

139

www.manaraa.com

introduces exponentially many integer variables to reduce the problem to PA. Among the
systems for interactively reasoning about richer theories of sets are Isabelle [201], HOL
[110], PVS [204]. First-order frameworks such as Athena [15] can use axiomatizations of
sets along with calls to resolution-based theorem provers [244, 248] to reason about sets.

Combinations of Decidable Theories. The techniques for combining quantifier-free
theories [197, 223] and their generalizations such as [239, 263, 266, 264, 241] are of great
importance for program verification. In this chapter we mostly focused on quantified for-
mulas, which add additional expressive power in writing concise specifications. Among the
general results for quantified formulas are the Feferman-Vaught theorem for products [90]
and term powers [155, 156]. Description logics [18] also support sets with cardinalities as
well as relations, but do not support quantification over sets. While we have found quan-
tifier elimination to be useful, many problems can be encoded in quantifier-free formulas,
which motivates the ongoing work in Section 7.9.

Analyses of Linked Data Structures. In addition to the new technical results, one of
the contributions of this chapter is to identify the uses of our decision procedure for veri-
fying data structure consistency. We have shown how BAPA enables the verification tools
to reason about sets and their sizes. This capability is particularly important for analyses
that handle dynamically allocated data structures where the number of objects is stati-
cally unbounded [190, 259, 226]. Recently, these approaches were extended to handle the
combinations of the constraints representing data structure contents and constraints repre-
senting numerical properties of data structures [224, 55]. Our result provides a systematic
mechanism for building precise and predictable versions of such analyses. Among other
constraints used for data structure analysis, BAPA is unique in being a complete algorithm
for an expressive theory that supports arbitrary quantifiers.

7.11 Conclusion

Motivated by static analysis and verification of relations between data structure content
and size, I presented an algorithm for deciding the first-order theory of Boolean algebra
with Presburger arithmetic (BAPA), established the precise complexity of BAPA, showing
that it is identical to the complexity of PA, implemented the algorithm and applied it to
discharge verification conditions. Our experience indicates that the algorithm is useful as
a component of a data structure verification system. I established that the quantifier-
free fragment of BAPA is in NP and presented an efficient encoding into quantifier-free
Presburger arithmetic. I believe that this encoding can be a basis for scalable decision
procedures.

140

www.manaraa.com

Chapter 8

Conclusions

This dissertation has presented the Jahob verification system. Jahob is based on a subset
of the commonly used implementation language Java, with specifications written in the lan-
guage of the popular interactive theorem prover Isabelle. I have shown that, in this general
setup, it is possible to implement a verification system that effectively proves strong prop-
erties of data structure implementations and data structure uses. My colleagues and I have
used the system to verify imperative data structures such as hash tables, linked lists, trees,
simplified skip lists, and purely functional versions of sorted binary search trees (including
the remove operation). We have verified not only global but also instantiable versions of
several of these data structures, supporting the typical form of usage of containers in Java
programs. While we have not aimed at necessarily verifying full functional correctness, we
succeeded in proving key correctness properties, such as the fact that removal from a sorted
binary search tree or a hash table indeed removes precisely the given (key,value)-binding
from the relation stored in the data structure.

This dissertation focuses on the reasoning engine within Jahob, which is based on a
combination of several different reasoning techniques. The key to deploying these techniques
is the idea of approximating complex formulas in higher-order logic with formulas in a
simpler logic.

First-order resolution-based theorem provers are among the most robust techniques I
have used in Jahob. These provers turned out to be relatively fast and their resource
control strategies proved extremely useful for software verification. The ability to reason
about general graphs (and not just about trees, for example) made it possible to naturally
implement assume/guarantee reasoning by inlining procedure specifications. This in turn
enabled data structure operations to be written in a recursive way, making their verification
simpler.

The use of monadic second-order logic over trees with field constraint analysis offered a
very high degree of automation for reasoning about reachability in the presence of imperative
data structure updates. This technique was particularly useful whenever we were able to
use the string mode of the MONA tool; we are exploring techniques for enabling its use
for a wider range of data structures. In tree mode and in the presence of larger proof
obligations, we have found the performance of MONA to decrease significantly, suggesting
that a combination of symbolic and automata-based decision procedures would be beneficial
in the future.

Finally, I deployed a new decision procedure, for Boolean Algebra with Presburger Arith-
metic (BAPA). I first formalized a decision procedure for BAPA by reduction to Presburger

141

www.manaraa.com

arithmetic and established the complexity for the BAPA decision problem, showing that
it is alternating doubly exponential with a linear number of alternations, thus matching
the complexity of Presburger arithmetic. Our preliminary experience of using BAPA shows
that, despite its high complexity, BAPA is effective on small formulas, which made it useful
in combination with other reasoning procedures. The high complexity of BAPA led me to
examine the quantifier-free fragment of BAPA. I proved that quantifier-free BAPA (which
is trivially NP-hard) belongs to NP. I showed the membership in NP as a consequence of
bounds on the size of nonredundant integer cone generators. This proof gives an effective
algorithm for the quantifier-free BAPA fragment.

Overall, these results confirm my hypothesis that different techniques have different
strengths and that their synergistic use enables the verification of a broader class of proper-
ties than attainable using any single technique in isolation. An approach based on splitting
proof obligations, although simple, turned out to be very successful on small methods. A
more sophisticated splitting strategy is likely to be needed for larger proof obligations, and
may require a tighter integration of reasoning procedures.

I was initially surprised by several discoveries that my coauthors and I made in this
project.

• The idea of using Isabelle notation as a semantic and syntactic basis for Jahob formulas
helped me avoid making arbitrary design decisions, and helped us debug the system.
Using Isabelle’s automated provers worked better than I initially expected given the
interactive nature of Isabelle as a prover, and was especially helpful in the initial stages
of the project, before translations to more tractable logic fragments were available.

• Our experience with first-order theorem provers contained many pleasant surprises.
Simple arithmetic axioms turned out to be sufficient in our examples, despite incom-
pleteness in comparison to Nelson-Oppen style approaches. The use of ghost fields
and recursion allowed us to verify recursive data structures, pointing to cases where
simple hints from programmers can eliminate the need to use transitive closure. (Yet
providing these hints can be fairly tricky for the cases where a local data structure op-
eration results in non-local changes to ghost specification fields of multiple objects.) In
the translation of higher-order logic to first-order logic, the simplification that results
from omitting sorts seems to have outweighed any advantage of using sorts expressed
as unary predicates to cut down the branching factor in search. Perhaps most surpris-
ing was the fact that omitting sorts in the translation is not only complete but also
sound, the only requirement being that the conflated sorts are of equal cardinality.
Finally, simple assumption filtering heuristics seem to work surprisingly well in choos-
ing relevant assumptions, despite the fact that they essentially ignore the semantics
of formulas and only look at their lexical structure, and despite the fact that theorem
provers have built-in heuristics for selection of clauses.

• Field constraint analysis initially grew out of a desire to eliminate the restrictions on
systems like the Pointer Assertion Logic Engine [190], where non-tree fields must be
uniquely determined by their edges. This was even perceived as a fundamental limita-
tion of the approach. I confess that even our first idea ignored the polarity of fields and
would have resulted in an unsound translation. Taking into account the polarity of
fields made the approach sound, but it was clear that it was an approximation in gen-
eral. Thomas Wies made a remarkable claim that field constraint elimination could be
complete under certain restrictions; my proof attempt led to a small correction to the

142

www.manaraa.com

algorithm which made this claim actually true. The result was a technique complete
for proving the preservation of field constraints themselves. On the other hand, this
technique, although powerful for proving many structural invariants, seems too weak
for reasoning about uninterpreted functions themselves. Indeed, the technique turned
out to be insufficient for proving postconditions that characterize container operations
where the abstraction function traverses non-tree fields, or for proving the injectivity
of otherwise unconstrained fields. This is one of the justifications for combining field
constraint analysis with first-order and Nelson-Oppen style provers.

• The fact that BAPA is decidable may come somewhat as a surprise (see [265, Section
6]), but is a fact described in [90]. The fact that the asymptotic complexity ends up
being the same as for Presburger arithmetic is a consequence of the fact that the algo-
rithm I present preserves the number of quantifier alternations, but also depends on
the way in which we measure very high complexity classes. In practice, the difference
between Presburger arithmetic and BAPA is significant and our experiments provided
a convincing demonstration of how doubly-exponential lower bounds can effectively
result in algorithms that work up to inputs of certain size and then suddenly stop
working. Therefore, although my work has delivered algorithms with as good worst-
case complexity on quantified BAPA as we can hope for, it is more realistic to focus
on using quantifier-free BAPA fragments in verification. My subsequent work shows
membership of quantifier-free BAPA in NP, showing for the first time how to avoid
the exponential explosion in the number of integer variables. I expect this result to
lead to substantially more efficient algorithms for BAPA, generalizing previous uses
of Presburger arithmetic in many verification systems [198, 44].

I expect these results to be a good starting point for the automated verification of com-
plex software systems. The algorithms for checking formula validity address the problem
of propagating the descriptions of reachable states through loop-free code and therefore
address verification in the presence of loop invariants and procedure contracts. Moreover,
specification inference techniques such as [253] can use the algorithms in this dissertation to
synthesize loop invariants and therefore propagate reachable states across arbitrary regions
of code.

8.1 Future Work

As I am writing the final lines of my dissertation, I am witnessing a number of interesting
results in verifying complex properties of software. The research community is adopting
new specification languages for reasoning about software [130], unifying the interests of
type theorists and program analysis researchers. New results demonstrate the verification
of larger classes of properties and the ability to scale the existing techniques to larger code
bases. Previously disjoint research communities are finding a common language in building
tools that increase software reliability, product groups are using analysis tools that require
the use of specifications [74], and commercial static analysis products are deployed to detect
software defects [70]. These developments are shaping software analysis and verification
as a field with a sound theoretical basis and concrete results that help improve software
productivity in practice.

By using general purpose implementation and specification languages, Jahob identifies
techniques for reasoning about expressive formulas as the core technology for building fu-

143

www.manaraa.com

ture verification tools. This view unifies existing analyses and enables us to build new
sophisticated analyses for complex properties. Jahob identifies particular procedures for
reasoning about formulas, shows that these procedures can verify interesting classes of
expressive properties, and proposes a mechanism for combining these procedures using a
unified specification language. Jahob aims to improve both the precision and the scalability
of verification, by analyzing properties whose automation was beyond the reach of previous
tools, and, at the same time, embracing modular reasoning that makes such precise anal-
yses feasible. I therefore believe that Jahob’s basic architecture is a good starting point
for future developments. The following paragraphs summarize some of the possible future
research directions. Although inspired by my experience with Jahob, I believe that they
also apply to other verification systems of similar architecture.

Encapsulation. The notion of encapsulation in object-oriented languages has been
explored from many angles, with the Boogie methodology [27, 29] and ownership types
[58, 39, 57] being among the most promising approaches. However, it is not yet clear that
the community has identified a solution that is both amenable to verification and sufficiently
flexible. Jahob’s encapsulation mechanisms are still part of an ongoing work. I expect that
the result will be a useful compromise between flexibility, verifiability, and conceptual sim-
plicity. Such a solution can contribute to the design of future languages with verifiable
imperative data structures.

Aliasing. Jahob encodes aliasing in a sound way, modelling memory as a set of functions. I
believe that approaches in this spirit provide an appropriate logical foundation for reasoning
about imperative languages. They are also compatible with notations such as role logic
[159, 151] and separation logic [130], which can be embedded into the Isabelle notation by
defining appropriate shorthands. Incorporating such approaches could make specification
and verification easier by taking advantage of common cases (bounded number of aliases
and disjointness of data structures), without restricting the set of analyzable programs.

Executing and constraint solving for specifications. Most specifications that we have
encountered in software verification are executable, and their execution is extremely useful
in identifying bugs in both the specification and the implementation. Modular execution
of set specifications requires constraint solving to synthesize states that satisfy procedure
preconditions [179, 40, 140]. The generality of HOL makes it difficult to execute and perform
constraint solving directly on HOL specifications [246]. Moreover, it opens up the question
of the semantics of encapsulation in the presence of executable specifications, because the
specification language is more expressive than the implementation language, which affects
the notion of observability. The use of bounded quantification as in [150] appears to be a
promising approach to identify specifications that are easier to execute and model check.
This approach supports the expression of a wide range of safety properties, and yet does
not make the construction of proofs much more difficult compared to the use of unbounded
quantifiers.

Language for correctness arguments. A useful feature of a verification system is
allowing users to manually specify correctness proofs of the properties of interest. Users
should be able to specify proofs of arbitrarily complex properties, such specifications should
be compatible with the way users reason about the system informally, and the system should
be able to check the supplied proofs efficiently. Jahob partially achieves this goal using its
interface to interactive theorem provers (Isabelle itself supports a natural deduction proof
style [249], and so does the Athena system [15], which could also be connected to Jahob).

144

www.manaraa.com

However, this approach somewhat obscures the verification problem because the interactive
theorem proving environment is independent from Jahob. The user critically relies on the
names of identifiers and subformulas to map the intuition about the specified program
into the intuition needed to complete the interactive proof. Among the possible solutions
for bridging this gap are allowing the program verifier to be interactive and embedding
programs into the logic of the theorem prover. Jahob’s use of noteThat...from statements
presents a simple step towards incorporating a proof presentation system into a program
verifier. However, for completeness, Jahob would need additional specification constructs
that correspond to natural-deduction proof steps. Such constructs would lead to a high-
level proof system for reasoning about software that serves as a platform for both manually
and automatically constructed correctness arguments for imperative programs.

Statistical and heuristic reasoning. Once a platform for sound reasoning is established,
it is possible to use statistical and heuristic techniques to infer possible invariants and
program annotations, relying on the soundness of the platform to detect incorrect inferences.
Statistical techniques have been applied to the inference of finite state machines [7, 88,
147], and to the inference of likely invariants [89] that, once inferred, can be statically
verified [194]. Techniques that more tightly integrate dynamic and static inference have
been proposed [258] and might ultimately be necessary to make this approach feasible.

Decision procedures. Given that propositional logic, one of the simplest logics, is NP-
complete, it is natural to ask how expressive a logic can be and still belong to NP. Such a logic
can then be encoded into SAT [162], or decided using a generalization of satisfiability solving
[30]. The fact that I have found QFBAPA to be in NP is promising in this regard. Other
expressive logics are likely to have useful NP fragments that yet remain to be identified.
NP logics are unlikely to support quantifiers, but often program structure can be used to
direct quantifier instantiation [254].

Proof search. Efficient decision procedures are useful for reasoning about well-understood
domains, but it is clear that they are not sufficient by themselves for reasoning about
software. Ultimately, the space of software systems that we can reason about is characterized
by our ability to construct correctness arguments, which suggests that we should explore
proof systems and automated proof search. Proof search in first-order logic is a mature
research topic, yet proof construction in the presence of more specific axioms is an active
area of research [213, 103].

New interfaces between verifiers and provers. Experience with assumption filtering
in Jahob (Section 5.4) and other systems [186] suggests that closer integration between
theorem provers and program verifiers is necessary, where, for example, the verifier indicates
which assumptions are likely to be relevant, or which quantifier instantiations are likely to be
fruitful. Ultimately, we can view a program verifier as a theorem prover tuned for reasoning
about certain kinds of state transforming functions [183].

Loop invariant synthesis. Loop invariant synthesis can in principle be cast as a theorem
proving problem, but it would require theorem provers that can deal with mathematical in-
duction, which is challenging and supported in a small number of theorem proving systems
[139, 45]. Static analysis can be used to synthesize loop invariants for particular domains
[35]. Among the most promising approaches for deriving complex program-dependent prop-
erties are predicate abstraction [24], as well as symbolic shape analysis [254] developed by
Thomas Wies and deployed in Jahob. The need for the analysis to adapt to the program
suggests that a form of demand-driven approach will be useful [120, 168].

145

www.manaraa.com

Formula approximation in program analysis. I believe that formula approximation
techniques have a great potential in automated reasoning about software. Sections 4.3
and 4.4 describe the use of formula approximation to enable specialized reasoning procedures
to communicate using a common expressive language. Formula approximations are also
potentially useful for synthesizing loop invariants and transfer functions. This is a natural
consequence of viewing static analysis as an approximation process [69] while representing
the analysis domain elements as formulas [114, 260, 220]. I believe that this idea can be
used to focus the effort of theorem provers to small formulas, avoiding the encoding of entire
domain elements.

Application-specific properties. One of my future goals is to explore the verification
of application-specific properties of software that contains complex data structures. In this
context, the results on data structure verification are significant because they show that
the verification of complex user-specified properties is possible, and because they enable
the verification of applications to view data structures as sets and relations, avoiding the
need to reason about data structure internals. Ultimately, automated verification of deep
application-specific properties is likely to require systems that have knowledge of the par-
ticular domain. One approach to building such systems is to develop techniques that enable
domain experts to customize the verifier. Customized systems have proven to be very useful
[226, 219, 87] but need to be made more accessible and need to work at a higher level of
abstraction.

Interactive deployment of verification tools. Given the potential of integrated de-
velopment environments such as Eclipse [100] to improve programmer productivity, it is
interesting to consider the use of verification tools in such environments. So far, we have
primarily used Jahob as a command-line tool, but Peter Schmitt from Freiburg University
implemented a simple Eclipse plugin that makes it possible to invoke Jahob from Eclipse.
Jahob’s modular verification approach is in principle appropriate for interactive use because
it allows the verification on a per method basis. The integration of the Spec# verifier Boogie
[27] into an interactive deployment environment suggests that such an approach is indeed
feasible, at least for verifying simple program properties. To make Jahob verification suffi-
ciently fast for interactive use, it would be desirable to make the granularity of verification
tasks even smaller, to employ more efficient reasoning techniques, and to make the entire
verification task more demand-driven and amenable to incremental computation. These
directions lead to challenging algorithmic questions, especially in the context of verifying
complex program properties. One promising step in this direction is the use of caching to
avoid similar invocations of decision procedures, which is incorporated in Jahob’s Bohne
plugin [254].

Supporting program transformations. An important class of tasks in integrated
development environments is different types of program refactoring [240]. Verifying the
correctness of such transformations may require proving properties such as equivalence of
program fragments, which is difficult in general but feasible for loop-free code. What makes
verification of factoring easier is that transformations are not arbitrary and that the type
and the parameters of a refactoring can provide proof hints on why the transformation is
valid.

In the context of interactive transformations supported by sophisticated program anal-
yses, it may be interesting to revisit programming by refinement, whose wide practical use
has so far been limited [2, 1, 47, 49, 20], but appears cost-effective when full specification

146

www.manaraa.com

is desired. One challenge is supporting refinements that introduce loops while keeping the
program development model intuitive for programmers.

More expressive specifications. The use of verification and analysis tools in interac-
tive program development suggests another avenue for future research: extending Jahob’s
specification language and the underlying analysis. First, it is useful to allow specifications
that mention sequences of method invocations and other statements. Higher-order logic in
Jahob is sufficiently expressive, but its particular interpretation in terms of program states
is limited to reasoning about a finite number of program points. On the other hand, queries
in an interactive context are likely to cross-cut larger pieces of code. It would therefore be
useful for a specification language to support temporal operators that can refer to past and
future events in program execution, as in temporal logic [209], and to support invocations
of methods within specifications, as in algebraic specifications [116], as in approaches based
on embedding of programs into the specification logic [139], as in the rich formalism of the
KeY system [5], or, for pure methods, as in JML [46].

An even more ambitious step in increasing the expressive power of specification lan-
guages is embedding not only the semantics but also the syntax of the language into logical
formulas. This approach would allow checking queries that refer to program structure and
would be useful for program understanding.

Beyond logic. An orthogonal aspect of specification language expressiveness is its robust-
ness with respect to specification errors, which are even more likely to occur in an interactive
context than in more stable program annotations. Mechanisms for detecting and avoiding
errors in specifications are essential for making specifications concise and closer to natural
language and are likely to require domain knowledge. This direction is therefore important
for making the specification process accessible to software developers and software designers.
Ultimately, its use in both implementation and specification languages can blur the distinc-
tion between software developers and users, holding out the hope to eliminate the software
development bottleneck and unlocking the continuously growing computing potential of our
society’s infrastructure.

8.2 Final Remarks

More than ten years ago, I became fascinated by the field of automated software verification,
only to be subsequently disillusioned by the tremendous gap between informal reasoning
and its formalization in verification tools. Years later, the success of static analyses and
lightweight verification systems convinced me that software verification, when approached
appropriately, is not an unreachable utopia but an exciting field capable of delivering many
concrete results. The depth of the software verification problem ensures that it will remain
an ambitious area in the future, an area that cross-cuts the entire field of computer science,
and an area that can both benefit from and have an impact on many other computer science
disciplines. I am therefore thrilled to have had an opportunity to experience some of the
challenges of this field and expect to continue exploring it in the future.

147

www.manaraa.com

148

www.manaraa.com

Bibliography

[1] J-R Abrial. The B-Book. Cambridge University Press, 1996. 146

[2] Jean-Raymond Abrial, Matthew K. O. Lee, Dave Neilson, P. N. Scharbach, and
Ib Sørensen. The B-method. In Proceedings of the 4th International Symposium of
VDM Europe on Formal Software Development-Volume 2, pages 398–405.
Springer-Verlag, 1991. 39, 146

[3] W. Ackermann. Solvable Cases of the Decision Problem. North Holland, 1954. 139

[4] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Martin Giese,
Reiner Hähnle, Wolfram Menzel, Wojciech Mostowski, Andreas Roth, Steffen
Schlager, and Peter H. Schmitt. The KeY tool. Software and System Modeling,
4:32–54, 2005. 39

[5] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Martin Giese, Elmar
Habermalz, Reiner Haehnle, Wolfram Menzel, and Peter H. Schmitt. The KeY
approach: Integrating object oriented design and formal verification. In Proceedings,
8th European Workshop on Logics in AI (JELIA), Malaga, Spain, 2000. 147

[6] Alexander Aiken, Edward L. Wimmers, and T. K. Lakshman. Soft typing with
conditional types. In Proc. 21st ACM POPL, pages 163–173, New York, NY, 1994. 9

[7] Glenn Ammons, Rastislav Bodik, and James R. Larus. Mining specifications. In
Proc. 29th ACM POPL, 2002. 145

[8] C. Scott Ananian, Krste Asanović, Bradley C. Kuszmaul, Charles E. Leiserson, and
Sean Lie. Unbounded transactional memory. IEEE Micro, Special Issue: Top Picks
from Computer Architecture Conferences, 26(1), 2006. 27

[9] C. Scott Ananian and Martin Rinard. Efficient object-based software transactions.
In Synchronization and Concurrency in Object-Oriented Languages (SCOOL), 2005.
27

[10] P. Andrews, M. Bishop, S. Issar, D. Nesmith, F. Pfenning, and H. Xi. TPS: A
theorem proving system for classical type theory. Journal of Automated Reasoning,
16(3):321–353, June 1996. 63

[11] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To
Truth Through Proof. Springer (Kluwer), 2nd edition, 2002. 43, 45, 46

[12] Konstantine Arkoudas. Denotational Proof Languages. PhD thesis, Massachusetts
Institute of Technology, 2000. 63

149

www.manaraa.com

[13] Konstantine Arkoudas. Specification, abduction, and proof. In Second International
Symposium on Automated Technology for Verification and Analysis, Taiwan,
October 2004. 64

[14] Konstantine Arkoudas, Sarfraz Khurshid, Darko Marinov, and Martin Rinard.
Integrating model checking and theorem proving for relational reasoning. In 7th
International Seminar on Relational Methods in Computer Science (RelMiCS 2003),
2003. 64

[15] Konstantine Arkoudas, Karen Zee, Viktor Kuncak, and Martin Rinard. Verifying a
file system implementation. In Sixth International Conference on Formal
Engineering Methods (ICFEM’04), volume 3308 of LNCS, Seattle, Nov 8-12, 2004
2004. 53, 63, 64, 89, 140, 144

[16] Alessandro Armando, Silvio Ranise, and Michaël Rusinowitch. A rewriting approach
to satisfiability procedures. Information and Computation, 183(2):140–164, 2003.
64, 88

[17] David Aspinall. Proof general. http://proofgeneral.inf.ed.ac.uk/. Last visited
December 9, 2006. 47

[18] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation
and Applications. CUP, 2003. 140

[19] Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In Handbook of
Automated Reasoning (Volume 1), chapter 2. Elsevier and The MIT Press, 2001. 76

[20] Ralph-Johan Back and Joakim von Wright. Refinement Calculus. Springer-Verlag,
1998. 38, 45, 52, 146

[21] Ittai Balaban, Amir Pnueli, and Lenore Zuck. Shape analysis by predicate
abstraction. In VMCAI’05, 2005. 91

[22] Egon Balas and Manfred W. Padberg. Set partitioning: A survey. SIAM Review,
18(4):710–760, 1976. 139

[23] Thomas Ball, Shuvendu Lahiri, and Madanlal Musuvathi. Zap: Automated theorem
proving for software analysis. Technical Report MSR-TR-2005-137, Microsoft
Research, 2005. 88

[24] Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram K. Rajamani.
Automatic predicate abstraction of C programs. In Proc. ACM PLDI, 2001. 9, 145

[25] M. Balser, W. Reif, G. Schellhorn, K. Stenzel, and A. Thums. Formal system
development with KIV. In T. Maibaum, editor, Fundamental Approaches to
Software Engineering, number 1783 in LNCS. Springer, 2000. 39

[26] Henk P. Barendregt. Lambda calculi with types. In Handbook of Logic in Computer
Science, Vol. II. Oxford University Press, 2001. 45, 73

[27] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and
K. Rustan M. Leino. Boogie: A modular reusable verifier for object-oriented
programs. In FMCO, 2005. 10, 144, 146

150

http://proofgeneral.inf.ed.ac.uk/

www.manaraa.com

[28] Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino, and
Wolfram Schulte. Verification of object-oriented programs with invariants. Journal
of Object Technology, 3(6):27–56, 2004. 39, 40

[29] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming
system: An overview. In CASSIS: Int. Workshop on Construction and Analysis of
Safe, Secure and Interoperable Smart devices, 2004. 88, 144

[30] Clark Barrett and Sergey Berezin. CVC Lite: A new implementation of the
cooperating validity checker. In Proc. 16th Int. Conf. on Computer Aided
Verification (CAV ’04), volume 3114 of Lecture Notes in Computer Science, pages
515–518, 2004. 9, 58, 64, 65, 88, 130, 145

[31] David Basin and Stefan Friedrich. Combining WS1S and HOL. In D.M. Gabbay
and M. de Rijke, editors, Frontiers of Combining Systems 2, volume 7 of Studies in
Logic and Computation, pages 39–56. Research Studies Press/Wiley, Baldock, Herts,
UK, February 2000. 54, 64

[32] Leonard Berman. The complexity of logical theories. Theoretical Computer Science,
11(1):71–77, 1980. 109, 110, 121, 139

[33] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development–Coq’Art: The Calculus of Inductive Constructions. Springer, 2004. 48,
58, 63

[34] Dimitris Bertsimas and John N. Tsitsiklis. Introduction to Linear Optimization.
Athena Scientific, Belmont, Massachusetts, 1997. 136, 139

[35] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Mine, D. Monniaux,
and X. Rival. Design and implementation of a special-purpose static program
analyzer for safety-critical real-time embedded software. In Essays Dedicated to Neil
D. Jones, volume 2566 of LNCS, 2002. 9, 145

[36] Bernard Boigelot, Sébastien Jodogne, and Pierre Wolper. An effective decision
procedure for linear arithmetic over the integers and reals. ACM Trans. Comput.
Logic, 6(3):614–633, 2005. 117, 120

[37] Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem.
Springer-Verlag, 1997. 139

[38] Charles Bouillaguet, Viktor Kuncak, Thomas Wies, Karen Zee, and Martin Rinard.
On using first-order theorem provers in a data structure verification system.
Technical Report MIT-CSAIL-TR-2006-072, MIT, November 2006.
http://hdl.handle.net/1721.1/34874. 65

[39] Chandrasekhar Boyapati. SafeJava: A Unified Type System for Safe Programming.
PhD thesis, MIT, 2004. 9, 32, 39, 144

[40] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat: Automated
testing based on Java predicates. In Proc. International Symposium on Software
Testing and Analysis, pages 123–133, July 2002. 9, 144

151

http://hdl.handle.net/1721.1/34874

www.manaraa.com

[41] R. S. Boyer and J S. Moore. Integrating decision procedures into heuristic theorem
provers: A case study of linear arithmetic. In Machine Intelligence, volume 11,
pages 83–124. Oxford University Press, 1988. 64

[42] M. Bozga and R. Iosif. On decidability within the arithmetic of addition and
divisibility. In FOSSACS’05, 2005. 139

[43] V. Bruyére, G. Hansel, C. Michaux, and R. Villemaire. Logic and p-recognizable
sets of integers. Bull. Belg. Math. Soc. Simon Stevin, 1:191–238, 1994. 129, 139

[44] Tevfik Bultan, Richard Gerber, and William Pugh. Model-checking concurrent
systems with unbounded integer variables: symbolic representations,
approximations, and experimental results. ACM Trans. Program. Lang. Syst.,
21(4):747–789, 1999. 116, 143

[45] Alan Bundy, David Basin, Dieter Hutter, and Andrew Ireland. Rippling: Meta-Level
Guidance for Mathematical Reasoning. Cambridge University Press, 2005. 145

[46] Lilian Burdy, Yoonsik Cheon, David Cok, Michael D. Ernst, Joe Kiniry, Gary T.
Leavens, K. Rustan M. Leino, and Erik Poll. An overview of JML tools and
applications. Technical Report NII-R0309, Computing Science Institute, Univ. of
Nijmegen, March 2003. 147

[47] Michael Butler, Jim Grundy, Thomas Langbacka, Rimvydas Ruksenas, and Joakim
von Wright. The refinement calculator: Proof support for program refinement. In
Proc. Formal Methods Pacific ’97, 1997. 146

[48] Domenico Cantone, Eugenio Omodeo, and Alberto Policriti. Set Theory for
Computing. Springer, 2001. 139

[49] D. Carrington, I. Hayes, R. Nickson, G. Watson, and J. Welsh. A review of existing
refinement tools. Technical report, University of Queensland, Australia, 1994. 146

[50] Amine Chaieb and Tobias Nipkow. Generic proof synthesis for Presburger
arithmetic. Technical report, Technische Universität München, October 2003. 139

[51] Patrice Chalin, Clément Hurlin, and Joe Kiniry. Integrating static checking and
interactive verification: Supporting multiple theories and provers in verification. In
Proceedings of Verified Software: Tools, Technologies, and Experiences (VSTTE),
2005. 39

[52] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. J.
ACM, 28(1):114–133, 1981. 121

[53] Yoonsik Cheon. A Runtime Assertion Checker for the Java Modelling Language.
PhD thesis, Iowa State University, April 2003. 39

[54] David R. Cheriton and Michael E. Wolf. Extensions for multi-module records in
conventional programming languages. In ACM PLDI, pages 296–306. ACM Press,
1987. 32

[55] Wei-Ngan Chin, Siau-Cheng Khoo, and Dana N. Xu. Extending sized types with
with collection analysis. In ACM PEPM’03, 2003. 140

152

www.manaraa.com

[56] Koen Claessen and Niklas Sörensson. New techniques that improve MACE-style
model finding. In Model Computation, 2003. 53, 55

[57] Dave Clarke and Sophia Drossopoulou. Ownership, encapsulation and the
disjointness of type and effect. In Proceedings of the 17th ACM conference on
Object-oriented programming, systems, languages, and applications, pages 292–310.
ACM Press, 2002. 144

[58] David G. Clarke, John M. Potter, and James Noble. Ownership types for flexible
alias protection. In Proc. 13th Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 1998. 144

[59] Paul J. Cohen. Set Theory and the Continuum Hypothesis. New York: Benjamin,
1966. 53

[60] David R. Cok. Reasoning with specifications containing method calls and model
fields. Journal of Object Technology, 4(8):77–103, September–October 2005. 88

[61] David R. Cok and Joseph R. Kiniry. Esc/java2: Uniting ESC/Java and JML. In
CASSIS: Construction and Analysis of Safe, Secure and Interoperable Smart devices,
2004. 10, 88

[62] Robert L. Constable, Stuart F. Allen, H. M. Bromley, Walter Rance Cleaveland,
J. F. Cremer, Robert W. Harper, Douglas J. Howe, Todd B. Knoblock, Nax P.
Mendler, Prakash Panangaden, James T. Sasaki, and Scott F. Smith. Implementing
Mathematics with the Nuprl Development System. Prentice-Hall, 1986. 63

[63] W. J. Cook, J. Fonlupt, and A. Schrijver. An integer analogue of Carathéodory’s
theorem. Journal of Combinatorial Theory, Series B, 40(63–70), 1986. 136

[64] D. C. Cooper. Theorem proving in arithmetic without multiplication. In B. Meltzer
and D. Michie, editors, Machine Intelligence, volume 7, pages 91–100. Edinburgh
University Press, 1972. 139

[65] Thierry Coquand and Gérard P. Huet. The calculus of constructions. Inf. Comput.,
76(2/3):95–120, 1988. 63

[66] James Corbett, Matthew Dwyer, John Hatcliff, Corina Pasareanu, Robby, Shawn
Laubach, and Hongjun Zheng. Bandera: Extracting finite-state models from Java
source code. In Proceedings of the 22nd International Conference on Software
Engineering (ICSE), June 2000. 39

[67] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cliff Stein.
Introduction to Algorithms (Second Edition). MIT Press and McGraw-Hill, 2001. 49

[68] J.-F. Couchot, F. Dadeau, D. Déharbe, A. Giorgetti, and S. Ranise. Proving and
debugging set-based specifications. In Proc. of the 6th Workshop on Formal
Methods, 2003. 89

[69] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Proc. 4th POPL, 1977. 54, 146

153

www.manaraa.com

[70] Coverity, Incorporated. http://www.coverity.com/, 2007. Last visited January 14,
2007. 143

[71] H.B. Curry, J. R. Hindley, and J. P. Seldin. Combinatory Logic II. North-Holland,
1972. 13

[72] Dennis Dams and Kedar S. Namjoshi. Shape analysis through predicate abstraction
and model checking. In VMCAI’03, volume 2575 of LNCS, pages 310–323, 2003. 91

[73] Bent Dandanell. Rigorous development using RAISE. In Proceedings of the
conference on Software for citical systems, pages 29–43. ACM Press, 1991. 39

[74] Manuvir Das. Formal specifications on industrial-strength code–From myth to
reality. In CAV, page 1, 2006. 10, 143

[75] Manuvir Das, Sorin Lerner, and Mark Seigle. ESP: Path-sensitive program
verification in polynomial time. In Proc. ACM PLDI, 2002. 9

[76] Rowan Davies. Practical Refinement-Type Checking. PhD thesis, CMU, 2005. 89

[77] Willem-Paul de Roever and Kai Engelhardt. Data Refinement: Model-oriented proof
methods and their comparison. Cambridge University Press, 1998. 11, 17, 31, 39, 69

[78] Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols in low-level
software. In Proc. ACM PLDI, 2001. 9

[79] Brian Demsky, Cristian Cadar, Daniel Roy, and Martin C. Rinard. Efficient
specification-assisted error localization. In Second International Workshop on
Dynamic Analysis, 2004. 39

[80] Greg Dennis, Felix Chang, and Daniel Jackson. Modular verification of code with
SAT. In ISSTA, 2006. 9, 10, 39, 89

[81] L. A. Dennis, G. Collins, M. Norrish, R. Boulton, K. Slind, G. Robinson, M. Gordon,
and T. Melham. The PROSPER toolkit. In S. Graf and M. Schwartbach, editors,
Tools and Algorithms for Constructing Systems (TACAS 2000), number 1785 in
Lecture Notes in Computer Science, pages 78–92. Springer-Verlag, 2000. 64

[82] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover for
program checking. Technical Report HPL-2003-148, HP Laboratories Palo Alto,
2003. 64, 88, 138

[83] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extended
static checking. Technical Report 159, COMPAQ Systems Research Center, 1998. 39

[84] Robert K. Dewar. Programming by refinement, as exemplified by the SETL
representation sublanguage. ACM TOPLAS, July 1979. 113

[85] Jonathan Edwards, Daniel Jackson, and Emina Torlak. A type system for object
models. In Foundations of Software Engineering, 2004. 63

[86] Friedrich Eisenbrand and Gennady Shmonina. Carathéodory bounds for integer
cones. Operations Research Letters, 34(5):564–568, September 2006.
http://dx.doi.org/10.1016/j.orl.2005.09.008. 130, 132, 134, 135, 139

154

http://www.coverity.com/
http://dx.doi.org/10.1016/j.orl.2005.09.008

www.manaraa.com

[87] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. Checking system
rules using system-specific, programmer-written compiler extensions. In Proc. 4th
USENIX OSDI, 2000. 146

[88] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
Bugs as deviant behavior: A general approach to inferring errors in systems code. In
Proc. 18th ACM Symposium on Operating Systems Principles, 2001. 145

[89] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos
Pacheco, Matthew S. Tschantz, and Chen Xiao. The Daikon system for dynamic
detection of likely invariants. Science of Computer Programming, 2006. 145

[90] S. Feferman and R. L. Vaught. The first order properties of products of algebraic
systems. Fundamenta Mathematicae, 47:57–103, 1959. 64, 109, 112, 128, 139, 140,
143

[91] Jeanne Ferrante and Charles W. Rackoff. The Computational Complexity of Logical
Theories, volume 718 of Lecture Notes in Mathematics. Springer-Verlag, 1979. 139

[92] Jean-Christophe Filliatre. Verification of non-functional programs using
interpretations in type theory. Journal of Functional Programming, 13(4):709–745,
2003. 39

[93] Cormac Flanagan, Rajeev Joshi, Xinming Ou, and James B. Saxe. Theorem proving
using lazy proof explication. In CAV, pages 355–367, 2003. 64

[94] Cormac Flanagan, Rajeev Joshi, and James B. Saxe. An explicating theorem prover
for quantified formulas. Technical Report HPL-2004-199, HP Laboratories Palo
Alto, 2004. 9, 51

[95] Cormac Flanagan and K. Rustan M. Leino. Houdini, an annotation assistant for
esc/java. In FME ’01: Proceedings of the International Symposium of Formal
Methods Europe on Formal Methods for Increasing Software Productivity, pages
500–517, London, UK, 2001. Springer-Verlag. 39

[96] Cormac Flanagan, K. Rustan M. Leino, Mark Lilibridge, Greg Nelson, James B.
Saxe, and Raymie Stata. Extended Static Checking for Java. In ACM Conf.
Programming Language Design and Implementation (PLDI), 2002. 10, 11, 15, 21,
29, 39

[97] Cormac Flanagan and Shaz Qadeer. Predicate abstraction for software verification.
In Proc. 29th ACM POPL, 2002. 39

[98] Cormac Flanagan and James B. Saxe. Avoiding exponential explosion: Generating
compact verification conditions. In Proc. 28th ACM POPL, 2001. 37

[99] Darren Foulger and Steve King. Using the SPARK toolset for showing the absence
of run-time errors in safety-critical software. In Ada-Europe 2001, pages 229–240,
2001. 39

[100] The Eclipse Foundation. http://www.eclipse.org/, 2007. Last visited January 14,
2007. 146

155

http://www.eclipse.org/

www.manaraa.com

[101] Pascal Fradet and Daniel Le Métayer. Shape types. In Proc. 24th ACM POPL,
1997. 10, 91

[102] Andreas Franke, Stephan M. Hess, Christoph G. Jung, Michael Kohlhase, and
Volker Sorge. Agent-oriented integration of distributed mathematical services. J.
Universal Computer Science, 5(3):156–187, 1999. 64

[103] H. Ganzinger and K. Korovin. Theory Instantiation. In Proceedings of the 13
Conference on Logic for Programming Artificial Intelligence Reasoning (LPAR’06),
Lecture Notes in Computer Science. Springer, 2006. 145

[104] Silvio Ghilardi. Model theoretic methods in combined constraint satisfiability.
Journal of Automated Reasoning, 33(3-4):221–249, 2005. 64

[105] Silvio Ghilardi, Enrica Nicolini, and Daniele Zucchelli. A comprehensive framework
for combined decision procedures. In FroCos, pages 1–30, 2005. 64

[106] Rakesh Ghiya and Laurie Hendren. Is it a tree, a DAG, or a cyclic graph? In Proc.
23rd ACM POPL, 1996. 10, 91

[107] Patrice Godefroid. Model checking for programming languages using verisoft. In
POPL ’97: Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 174–186, New York, NY, USA, 1997.
ACM Press. 39

[108] Kurt Gödel. On Formally Undecidable Propositions of Principia Mathematica and
Related Systems (reprint). Dover, 1992. 53

[109] Donald I. Good, Robert L. Akers, and Lawrence M. Smith. Report on Gypsy 2.05.
Technical report, University of Texas at Austin, February 1986. 39

[110] M. J. C. Gordon and T. F. Melham. Introduction to HOL, a theorem proving
environment for higher-order logic. Cambridge University Press, Cambridge,
England, 1993. 45, 63, 140

[111] Michael Gordon. Notes on PVS from a HOL perspective.
http://www.cl.cam.ac.uk/users/mjcg/PVS.html, 1995. Last visited January 17,
2007. 63

[112] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification. Sun Microsystems, Inc., 2001. 11, 27

[113] Erich Grädel. Decidable fragments of first-order and fixed-point logic. From
prefix-vocabulary classes to guarded logics. In Proceedings of Kalmár Workshop on
Logic and Computer Science, Szeged, 2003. 103

[114] Susanne Graf and Hassen Saidi. Construction of abstract state graphs with PVS. In
Proc. 9th CAV, pages 72–83, 1997. 146

[115] Dan Grossman. Existential types for imperative languages. In Proc. 11th ESOP,
2002. 9

[116] John Guttag and James Horning. Larch: Languages and Tools for Formal
Specification. Springer-Verlag, 1993. 39, 147

156

http://www.cl.cam.ac.uk/users/mjcg/PVS.html

www.manaraa.com

[117] John V. Guttag, Ellis Horowitz, and David R. Musser. Abstract data types and
software validation. Communications of the ACM, 21(12):1048–1064, 1978. 88

[118] K. Havelund and T. Pressburger. Model checking java programs using java
pathfinder. International Journal on Software Tools for Technology Transfer, 2000.
39

[119] J.G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe, and
A. Sandholm. Mona: Monadic second-order logic in practice. In TACAS ’95, LNCS
1019, 1995. 120, 129

[120] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L. McMillan.
Abstractions from proofs. In 31st POPL, 2004. 145

[121] Benjamin Hindman and Dan Grossman. Atomicity via source-to-source translation.
In ACM SIGPLAN Workshop on Memory Systems Performance and Correctness,
2006. 27

[122] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of
the ACM, 12(10):576–580, 1969. 34

[123] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica,
1(4):271–281, 1971. 17

[124] Marieke Huisman. Java program verification in higher order logic with PVS and
Isabelle. PhD thesis, University of Nijmegen, 2001. 88

[125] Joe Hurd. Integrating Gandalf and HOL. In Proc. 12th International Conference on
Theorem Proving in Higher Order Logics, volume 1690 of Lecture Notes in
Computer Science, pages 311–321. Springer, September 1999. 64

[126] Joe Hurd. An LCF-style interface between HOL and first-order logic. In CADE-18,
2002. 13, 64, 89

[127] Neil Immerman. Descriptive Complexity. Springer-Verlag, 1998. 47, 92

[128] Neil Immerman, Alexander Moshe Rabinovich, Thomas W. Reps, Shmuel Sagiv, and
Greta Yorsh. The boundary between decidability and undecidability for
transitive-closure logics. In Computer Science Logic (CSL), pages 160–174, 2004. 106

[129] Neil Immerman, Alexander Moshe Rabinovich, Thomas W. Reps, Shmuel Sagiv, and
Greta Yorsh. Verification via structure simulation. In CAV, pages 281–294, 2004.
92, 98, 103, 107, 108

[130] Samin Ishtiaq and Peter W. O’Hearn. BI as an assertion language for mutable data
structures. In Proc. 28th ACM POPL, 2001. 89, 143, 144

[131] Daniel Jackson. Software Abstractions: Logic, Language, & Analysis. MIT Press,
2006. 39, 53, 55, 63, 138

[132] Daniel Jackson, Ilya Shlyakhter, and Manu Sridharan. A micromodularity
mechanism. In Proc. ACM SIGSOFT Conf. Foundations of Software Engineering /
European Software Engineering Conference (FSE/ESEC ’01), 2001. 9, 53

157

www.manaraa.com

[133] Bart P. F. Jacobs and Erik Poll. Java program verification at Nijmegen:
Developments and perspective. Technical Report NIII-R0318, Nijmegen Institute of
Computing and Information Sciences, September 2003. 39

[134] Jacob L. Jensen, Michael E. Jørgensen, Nils Klarlund, and Michael I. Schwartzbach.
Automatic verification of pointer programs using monadic second order logic. In
Proc. ACM PLDI, Las Vegas, NV, 1997. 91

[135] Cliff B. Jones. Systematic Software Development using VDM. Prentice Hall
International (UK) Ltd., 1986. http://www.vdmbook.com/jones90.pdf. 39

[136] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
Model Checking: 1020 States and Beyond. Information and Computing,
98(2):142–170, 1992. 9

[137] Deepak Kapur. Automatically generating loop invariants using quantifier
elimination. In IMACS Intl. Conf. on Applications of Computer Algebra, 2004. 116

[138] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore, editors.
Computer-Aided Reasoning: ACL2 Case Studies. Kluwer Academic Publishers,
2000. 53, 63

[139] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore, editors.
Computer-Aided Reasoning: An Approach. Kluwer Academic Publishers, 2000. 63,
145, 147

[140] Sarfraz Khurshid and Darko Marinov. TestEra: Specification-based testing of java
programs using SAT. Autom. Softw. Eng., 11(4):403–434, 2004. 89, 144

[141] James Cornelius King. A Program Verifier. PhD thesis, CMU, 1970. 39

[142] H. Kirchner, S. Ranise, C. Ringeissen, and D. K. Tran. Automatic combinability of
rewriting based satisfiability procedures. In 13th International Conference on Logic
Programming and Artificial Intelligence and Reasoning (LPAR), 2006. 64

[143] Nils Klarlund, Anders Møller, and Michael I. Schwartzbach. MONA implementation
secrets. In Proc. 5th International Conference on Implementation and Application of
Automata. LNCS, 2000. 9, 23, 58, 92, 94, 117

[144] Nils Klarlund and Michael I. Schwartzbach. Graph types. In Proc. 20th ACM
POPL, Charleston, SC, 1993. 91

[145] Dexter Kozen. Complexity of boolean algebras. Theoretical Computer Science,
10:221–247, 1980. 121, 123, 139

[146] Dexter Kozen. Theory of Computation. Springer, 2006. 121

[147] Ted Kremenek, Paul Twohey, Godmar Back, Andrew Y. Ng, and Dawson Engler.
From uncertainty to belief: Inferring the specification within. In Seventh USENIX
Symposium on Operating Systems Design and Implementation (OSDI 2006), 2006.
145

[148] Viktor Kuncak. Binary search trees. The Archive of Formal Proofs,
http://afp.sourceforge.net/, April 2004. 88

158

http://www.vdmbook.com/jones90.pdf
http://afp.sourceforge.net/

www.manaraa.com

[149] Viktor Kuncak and Daniel Jackson. On relational analysis of algebraic datatypes.
Technical Report 985, MIT, April 2005. 55

[150] Viktor Kuncak and Daniel Jackson. Relational analysis of algebraic datatypes. In
Joint 10th European Software Engineering Conference (ESEC) and 13th ACM
SIGSOFT Symposium on the Foundations of Software Engineering (FSE), 2005. 53,
144

[151] Viktor Kuncak, Patrick Lam, and Martin Rinard. Role analysis. In Annual ACM
Symp. on Principles of Programming Languages (POPL), 2002. 10, 66, 107, 144

[152] Viktor Kuncak, Patrick Lam, Karen Zee, and Martin Rinard. Modular pluggable
analyses for data structure consistency. IEEE Transactions on Software
Engineering, 32(12), December 2006. 10, 49, 59, 91, 94, 107, 112, 113

[153] Viktor Kuncak, Hai Huu Nguyen, and Martin Rinard. An algorithm for deciding
BAPA: Boolean Algebra with Presburger Arithmetic. In 20th International
Conference on Automated Deduction, CADE-20, Tallinn, Estonia, July 2005. 109,
110, 130, 138

[154] Viktor Kuncak, Hai Huu Nguyen, and Martin Rinard. Deciding Boolean Algebra
with Presburger Arithmetic. J. of Automated Reasoning, 2006.
http://dx.doi.org/10.1007/s10817-006-9042-1. 109, 130, 139

[155] Viktor Kuncak and Martin Rinard. On the theory of structural subtyping.
Technical Report 879, Laboratory for Computer Science, Massachusetts Institute of
Technology, 2003. 140

[156] Viktor Kuncak and Martin Rinard. Structural subtyping of non-recursive types is
decidable. In Eighteenth Annual IEEE Symposium on Logic in Computer Science,
2003. 64, 140

[157] Viktor Kuncak and Martin Rinard. Boolean algebra of shape analysis constraints.
In Proc. 5th International Conference on Verification, Model Checking and Abstract
Interpretation, 2004. 108

[158] Viktor Kuncak and Martin Rinard. The first-order theory of sets with cardinality
constraints is decidable. Technical Report 958, MIT CSAIL, July 2004. 109, 110,
124, 130, 138

[159] Viktor Kuncak and Martin Rinard. Generalized records and spatial conjunction in
role logic. In 11th Annual International Static Analysis Symposium (SAS’04),
Verona, Italy, August 26–28 2004. 144

[160] Viktor Kuncak and Martin Rinard. Decision procedures for set-valued fields. In 1st
International Workshop on Abstract Interpretation of Object-Oriented Languages
(AIOOL 2005), 2005. 65, 89, 107, 139

[161] Shuvendu K. Lahiri and Shaz Qadeer. Verifying properties of well-founded linked
lists. In POPL’06, 2006. 107

[162] Shuvendu K. Lahiri and Sanjit A. Seshia. The UCLID decision procedure. In
CAV’04, 2004. 9, 130, 145

159

http://dx.doi.org/10.1007/s10817-006-9042-1

www.manaraa.com

[163] Patrick Lam, Viktor Kuncak, and Martin Rinard. Cross-cutting techniques in
program specification and analysis. In 4th International Conference on
Aspect-Oriented Software Development (AOSD’05), 2005. 32, 40

[164] Patrick Lam, Viktor Kuncak, and Martin Rinard. Generalized typestate checking
for data structure consistency. In 6th Int. Conf. Verification, Model Checking and
Abstract Interpretation, 2005. 10, 107, 109, 116

[165] Patrick Lam, Viktor Kuncak, and Martin Rinard. Hob: A tool for verifying data
structure consistency. In 14th International Conference on Compiler Construction
(tool demo), April 2005. 91, 107

[166] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML.
Technical Report 96-06p, Iowa State University, 2001. 88

[167] Oukseh Lee, Hongseok Yang, and Kwangkeun Yi. Automatic verification of pointer
programs using grammar-based shape analysis. In ESOP, 2005. 10, 89, 91

[168] K. Rustan M. Leino and F. Logozzo. Loop invariants on demand. In Proceedings of
the the 3rd Asian Symposium on Programming Languages and Systems
(APLAS’05), volume 3780 of LNCS, 2005. 145

[169] K. Rustan M. Leino and Peter Müller. A verification methodology for model fields.
In ESOP’06, 2006. 88

[170] Xavier Leroy. The Objective Caml system, release 3.08, July 2004. 40

[171] Xavier Leroy. Formal certification of a compiler back-end, or: programming a
compiler with a proof assistant. In POPL, 2006. 53

[172] T. Lev-Ami, N. Immerman, T. Reps, M. Sagiv, S. Srivastava, and G. Yorsh.
Simulating reachability using first-order logic with applications to verification of
linked data structures. In CADE-20, 2005. 107

[173] Tal Lev-Ami. TVLA: A framework for Kleene based logic static analyses. Master’s
thesis, Tel-Aviv University, Israel, 2000. 89

[174] Tal Lev-Ami, Thomas Reps, Mooly Sagiv, and Reinhard Wilhelm. Putting static
analysis to work for verification: A case study. In Int. Symp. Software Testing and
Analysis, 2000. 89, 107

[175] Barbara Liskov and John Guttag. Program Development in Java. Addison-Wesley,
2001. 11

[176] L. Loewenheim. Über Mögligkeiten im Relativkalkül. Math. Annalen, 76:228–251,
1915. 112, 139

[177] Maria Manzano. Extensions of First-Order Logic. Cambridge University Press,
1996. 74, 87

[178] C. Marché, C. Paulin-Mohring, and X. Urbain. The Krakatoa tool for certification
of JAVA/JAVACARD programs annotated in JML. Journal of Logic and Algebraic
Programming, 2003. 10, 39, 89

160

www.manaraa.com

[179] Darko Marinov. Automatic Testing of Software with Structurally Complex Inputs.
PhD thesis, MIT, 2005. 39, 89, 144

[180] Bruno Marnette, Viktor Kuncak, and Martin Rinard. On algorithms and complexity
for sets with cardinality constraints. Technical report, MIT CSAIL, August 2005.
130

[181] Kim Marriott and Martin Odersky. Negative boolean constraints. Technical Report
94/203, Monash University, August 1994. 139

[182] Ursula Martin and Tobias Nipkow. Boolean unification: The story so far. Journal of
Symbolic Computation, 7(3):275–293, 1989. 139

[183] John Matthews, J. Strother Moore, Sandip Ray, and Daron Vroon. Verification
condition generation via theorem proving. In LPAR, pages 362–376, 2006. 145

[184] Sean McLaughlin, Clark Barrett, and Yeting Ge. Cooperating theorem provers: A
case study combining HOL-Light and CVC Lite. In Proc. 3rd Workshop on
Pragmatics of Decision Procedures in Automated Reasoning (PDPAR ’05), volume
144(2) of Electronic Notes in Theoretical Computer Science, pages 43–51. Elsevier,
January 2006. 64

[185] Scott McPeak and George C. Necula. Data structure specifications via local equality
axioms. In CAV, pages 476–490, 2005. 66, 91, 107

[186] Jia Meng and L. C. Paulson. Lightweight relevance filtering for machine-generated
resolution problems. In ESCoR: Empirically Successful Computerized Reasoning,
2006. 64, 66, 78, 89, 145

[187] Jia Meng and L. C. Paulson. Translating higher-order problems to first-order
clauses. In ESCoR: Empir. Successful Comp. Reasoning, pages 70–80, 2006. 13, 64,
89

[188] Jia Meng and Lawrence C. Paulson. Experiments on supporting interactive proof
using resolution. In IJCAR, 2004. 13, 54, 64, 89

[189] Robin Milner. An algebraic definition of simulation between programs. In
Proceedings of the 2nd international joint Artificial intelligence Conference, 1971. 17

[190] Anders Møller and Michael I. Schwartzbach. The Pointer Assertion Logic Engine. In
Programming Language Design and Implementation, 2001. 10, 91, 92, 94, 103, 108,
140, 142

[191] Steven S. Muchnick and Neil D. Jones, editors. Program Flow Analysis: Theory and
Applications. Prentice-Hall, Inc., 1981. 91

[192] Madanlal Musuvathi, David Y.W. Park, Andy Chou, Dawson R. Engler, and
David L. Dill. CMC: A pragmatic approach to model checking real code. In
OSDI’02, 2002. 39

[193] David A. Naumann and Michael Barnett. Towards imperative modules: Reasoning
about invariants and sharing of mutable state. In LICS, pages 313–323, 2004. 40

161

www.manaraa.com

[194] Toh Ne Win, Michael D. Ernst, Stephen J. Garland, Dilsun Kırlı, and Nancy Lynch.
Using simulated execution in verifying distributed algorithms. Software Tools for
Technology Transfer, 6(1):67–76, July 2004. 145

[195] Greg Nelson. Techniques for program verification. Technical report, XEROX Palo
Alto Research Center, 1981. 39, 61

[196] Greg Nelson. Verifying reachability invariants of linked structures. In POPL, 1983.
107

[197] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision
procedures. ACM TOPLAS, 1(2):245–257, 1979. 61, 64, 140

[198] Huu Hai Nguyen, Cristina David, Shengchao Qin, and Wei-Ngan Chin. Automated
verification of shape, size and bag properties via separation logic. In VMCAI, 2007.
89, 143

[199] Robert Nieuwenhuis and Albert Rubio. Paramodulation-based theorem proving. In
Handbook of Automated Reasoning (Volume 1), chapter 7. Elsevier and The MIT
Press, 2001. 76, 87

[200] Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL Tutorial
Draft, March 8 2002. 29, 48, 58, 63

[201] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer-Verlag, 2002. 11,
15, 19, 43, 46, 140

[202] Hans Jürgen Ohlbach and Jana Koehler. How to extend a formal system with a
boolean algebra component. In W. Bibel P.H. Schmidt, editor, Automated
Deduction. A Basis for Applications, volume III, pages 57–75. Kluwer Academic
Publishers, 1998. 125, 130, 139

[203] Chris Okasaki. Purely Functional Data Structures. Cambridge University Press,
1998. 67

[204] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In
Deepak Kapur, editor, 11th CADE, volume 607 of LNAI, pages 748–752, jun 1992.
63, 64, 140

[205] Leszek Pacholski, Wieslaw Szwast, and Lidia Tendera. Complexity results for
first-order two-variable logic with counting. SIAM J. on Computing,
29(4):1083–1117, 2000. 47

[206] Christos H. Papadimitriou. On the complexity of integer programming. J. ACM,
28(4):765–768, 1981. 130

[207] Lawrence C. Paulson. Isabelle: the next 700 theorem provers. In P. Odifreddi,
editor, Logic and Computer Science, pages 361–386. Academic Press, 1990. 63

[208] Benjamin Pierce. Types and Programming Languages. The MIT Press, Cambridge,
Mass., 2001. 45

162

www.manaraa.com

[209] Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57, 1977. 147

[210] Andreas Podelski and Andrey Rybalchenko. Transition predicate abstraction and
fair termination. In ACM POPL, 2005. 115

[211] Andreas Podelski and Thomas Wies. Boolean heaps. In Proc. Int. Static Analysis
Symposium, 2005. 33, 91, 92, 96, 108

[212] M. Presburger. Über die vollständigkeit eines gewissen systems der aritmethik
ganzer zahlen, in welchem die addition als einzige operation hervortritt. In Comptes
Rendus du premier Congrès des Mathématiciens des Pays slaves, Warsawa, pages
92–101, 1929. 120, 139

[213] Virgile Prevosto and Uwe Waldmann. SPASS+T. In ESCoR: Empirically Successful
Computerized Reasoning, volume 192, 2006. 88, 145

[214] William Pugh. Skip lists: A probabilistic alternative to balanced trees. In
Communications of the ACM 33(6):668–676, 1990. 92, 94

[215] William Pugh. The Omega test: a fast and practical integer programming algorithm
for dependence analysis. In Supercomputing ’91: Proceedings of the 1991 ACM/IEEE
conference on Supercomputing, pages 4–13. ACM Press, 1991. 9, 120, 139

[216] Silvio Ranise and Cesare Tinelli. The SMT-LIB format: An initial proposal. In
Proceedings of the Workshop on Pragmatics of Decision Procedures in Automated
Reasoning (PDPAR), 2003. 58, 65

[217] C. R. Reddy and D. W. Loveland. Presburger arithmetic with bounded quantifier
alternation. In ACM STOC, pages 320–325. ACM Press, 1978. 121, 122, 139

[218] Jan Reineke. Shape analysis of sets. Master’s thesis, Universität des Saarlandes,
Germany, June 2005. 89

[219] Thomas Reps, Mooly Sagiv, and Alexey Loginov. Finite differencing of logical
formulas for static analysis. In Proc. 12th ESOP, 2003. 107, 146

[220] Thomas Reps, Mooly Sagiv, and Greta Yorsh. Symbolic implementation of the best
transformer. In Proc. 5th International Conference on Verification, Model Checking
and Abstract Interpretation, 2004. 146

[221] Peter Revesz. Quantifier-elimination for the first-order theory of boolean algebras
with linear cardinality constraints. In Proc. Advances in Databases and Information
Systems (ADBIS’04), 2004. 109, 116, 130, 139

[222] Piotr Rudnicki and Andrzej Trybulec. On equivalents of well-foundedness. J.
Autom. Reasoning, 23(3-4):197–234, 1999. 63

[223] Harald Ruess and Natarajan Shankar. Deconstructing Shostak. In Proc. 16th IEEE
LICS, 2001. 140

[224] Radu Rugina. Quantitative shape analysis. In Static Analysis Symposium (SAS’04),
2004. 10, 89, 140

163

www.manaraa.com

[225] Radu Rugina and Martin Rinard. Symbolic bounds analysis of pointers, array
indices, and accessed memory regions. In PLDI’00, pages 182–195, 2000. 9

[226] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis via
3-valued logic. ACM TOPLAS, 24(3):217–298, 2002. 9, 10, 89, 91, 107, 140, 146

[227] Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley &
Sons, 1998. 136

[228] Stephan Schulz. E – A Brainiac Theorem Prover. Journal of AI Communications,
15(2/3):111–126, 2002. 13, 58, 71, 78

[229] András Sebö. Hilbert bases, Caratheodory’s theorem and combinatorial
optimization. In R. Kannan and W. Pulleyblank, editors, Integer Programming and
Combinatorial Optimization I. University of Waterloo Press, 1990. 138, 139

[230] Natarajan Shankar. Using decision procedures with a higher-order logic. In Proc.
2001 International Conference on Theorem Proving in Higher Order Logics, 2001. 64

[231] Joerg Siekmann, Christoph Benzmueller, Vladimir Brezhnev, Lassaad
Cheikhrouhou, Armin Fiedler, Andreas Franke, Helmut Horacek, Michael Kohlhase,
Andreas Meier, Erica Melis, Markus Moschner, Immanuel Normann, Martin Pollet,
Volker Sorge, Carsten Ullrich, Claus-Peter Wirth, and Juergen Zimmer. Proof
development with OMEGA. LNAI, 2392:144, 2002. 63

[232] Thoralf Skolem. Untersuchungen über die Axiome des Klassenkalküls and über
“Produktations- und Summationsprobleme”, welche gewisse Klassen von Aussagen
betreffen. Skrifter utgit av Vidnskapsselskapet i Kristiania, I. klasse, no. 3, Oslo,
1919. 112

[233] Robert E. Strom and Shaula Yemini. Typestate: A programming language concept
for enhancing software reliability. IEEE TSE, January 1986. 10

[234] G. Sutcliffe and C. B. Suttner. The TPTP problem library: CNF release v1.2.1.
Journal of Automated Reasoning, 21(2):177–203, 1998. 78

[235] J. W. Thatcher and J. B. Wright. Generalized finite automata theory with an
application to a decision problem of second-order logic. Mathematical Systems
Theory, 2(1):57–81, August 1968. 91, 129

[236] Wolfgang Thomas. Languages, automata, and logic. In Handbook of Formal
Languages Vol.3: Beyond Words. Springer-Verlag, 1997. 129

[237] Cesare Tinelli. Cooperation of background reasoners in theory reasoning by residue
sharing. Journal of Automated Reasoning, 30(1):1–31, January 2003. 62, 64

[238] Cesare Tinelli and Mehdi T. Harandi. A new correctness proof of the Nelson–Oppen
combination procedure. In F. Baader and K. U. Schulz, editors, Frontiers of
Combining Systems, Applied Logic, pages 103–120, March 1996. 64

[239] Cesare Tinelli and Calogero Zarba. Combining nonstably infinite theories. Journal
of Automated Reasoning, 34(3), 2005. 64, 140

164

www.manaraa.com

[240] Frank Tip, Adam Kiezun, and Dirk Bäumer. Refactoring for generalization using
type constraints. In OOPSLA ’03, pages 13–26, 2003. 146

[241] Ashish Tiwari. Decision procedures in automated deduction. PhD thesis, Department
of Computer Science, State University of New York at Stony Brook, 2000. 64, 140

[242] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In Tools and
Algorithms for Construction and Analysis of Systems (TACAS), 2007. 39, 63

[243] John Venn. On the diagrammatic and mechanical representation of propositions and
reasonings. Dublin Philosophical Magazine and Journal of Science, 9(59):1–18, 1880.
117

[244] Andrei Voronkov. The anatomy of Vampire (implementing bottom-up procedures
with code trees). Journal of Automated Reasoning, 15(2):237–265, 1995. 9, 58, 140

[245] Igor Walukiewicz. Monadic second-order logic on tree-like structures. Theoretical
Computer Science, 275(1–2):311–346, March 2002. 64

[246] Tjark Weber. Bounded model generation for Isabelle/HOL. volume 125 of Electronic
Notes in Theoretical Computer Science, pages 103–116. Elsevier, July 2005. 144

[247] Ben Wegbreit and Jay M. Spitzen. Proving properties of complex data structures.
Journal of the ACM (JACM), 23(2):389–396, 1976. 19

[248] C. Weidenbach. Combining superposition, sorts and splitting. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume II, chapter 27,
pages 1965–2013. Elsevier Science, 2001. 9, 13, 26, 58, 71, 78, 87, 140

[249] Markus Wenzel. Isabelle/Isar — a versatile environment for human-readable formal
proof documents. PhD thesis, Technische Universitaet Muenchen, 2002. 144

[250] H. Whitney. On the abstract properties of linear independence. American Journal
of Mathematics, 57:509–533, 1935. 134, 138

[251] Thomas Wies. Symbolic shape analysis. Master’s thesis, Universität des Saarlandes,
Saarbrücken, Germany, September 2004. 63, 91, 92, 94, 96, 108

[252] Thomas Wies, Viktor Kuncak, Patrick Lam, Andreas Podelski, and Martin Rinard.
On field constraint analysis. Technical Report MIT-CSAIL-TR-2005-072,
MIT-LCS-TR-1010, MIT CSAIL, November 2005. 91, 94

[253] Thomas Wies, Viktor Kuncak, Patrick Lam, Andreas Podelski, and Martin Rinard.
Field constraint analysis. In Proc. Int. Conf. Verification, Model Checking, and
Abstract Interpratation, 2006. 10, 33, 91, 94, 143

[254] Thomas Wies, Viktor Kuncak, Karen Zee, Andreas Podelski, and Martin Rinard.
On verifying complex properties using symbolic shape analysis. Technical Report
MPI-I-2006-2-1, Max-Planck Institute for Computer Science, 2006.
http://arxiv.org/abs/cs.PL/0609104. 10, 20, 33, 63, 91, 94, 96, 145, 146

[255] Jim Woodcock and Jim Davies. Using Z. Prentice-Hall, Inc., 1996. 39

165

http://arxiv.org/abs/cs.PL/0609104

www.manaraa.com

[256] XEmacs: The next generation of Emacs. http://www.xemacs.org/. Last visited
December 9, 2006. 47

[257] Hongwei Xi and Frank Pfenning. Eliminating array bound checking through
dependent types. SIGPLAN Notices, 33(5):249–257, 1998. 9, 89

[258] Greta Yorsh, Thomas Ball, and Mooly Sagiv. Testing, abstraction, theorem proving:
better together! In ISSTA, pages 145–156, 2006. 145

[259] Greta Yorsh, Thomas Reps, and Mooly Sagiv. Symbolically computing most-precise
abstract operations for shape analysis. In 10th TACAS, 2004. 108, 140

[260] Greta Yorsh, Thomas Reps, Mooly Sagiv, and Reinhard Wilhelm. Logical
characterizations of heap abstractions. TOCL, 8(1), 2007. 146

[261] Greta Yorsh, Alexey Skidanov, Thomas Reps, and Mooly Sagiv. Automatic
assume/guarantee reasoning for heap-manupilating programs. In 1st AIOOL
Workshop, 2005. 108

[262]
∩
γreta Yorsh, Thomas Reps, Mooly Sagiv, and Reinhard Wilhelm. Logical
characterizations of heap abstractions. ACM Transactions on Computational Logic
(TOCL), 8(1), January 2007. 108

[263] Calogero G. Zarba. The Combination Problem in Automated Reasoning. PhD thesis,
Stanford University, 2004. 64, 140

[264] Calogero G. Zarba. Combining sets with elements. In Nachum Dershowitz, editor,
Verification: Theory and Practice, volume 2772 of Lecture Notes in Computer
Science, pages 762–782. Springer, 2004. 140

[265] Calogero G. Zarba. A quantifier elimination algorithm for a fragment of set theory
involving the cardinality operator. In 18th International Workshop on Unification,
2004. 109, 139, 143

[266] Calogero G. Zarba. Combining sets with cardinals. J. of Automated Reasoning,
34(1), 2005. 63, 110, 128, 130, 140

[267] Karen Zee, Patrick Lam, Viktor Kuncak, and Martin Rinard. Combining theorem
proving with static analysis for data structure consistency. In International
Workshop on Software Verification and Validation (SVV 2004), Seattle, November
2004. 38, 49, 51, 88

[268] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad Malik.
Efficient conflict driven learning in boolean satisfiability solver. In ICCAD, pages
279–285, 2001. 9

[269] Dengping Zhu and Hongwei Xi. Safe programming with pointers through stateful
views. In Proc. 7th Int. Symp. Practical Aspects of Declarative Languages.
Springer-Verlag LNCS vol. 3350, 2005. 89

166

http://www.xemacs.org/

	Introduction
	Program Verification Today
	Verification of Data Structures
	The Design of the Jahob Verification System
	Reasoning about Expressive Constraints in Jahob
	Summary of Contributions

	An Example of Data Structure Verification in Jahob
	A Jahob Session
	Specifying Java Programs in Jahob
	Details of a Container Implementation and Specification
	Generating Verification Conditions in Jahob
	Proving Formulas using Multiple Reasoning Procedures

	An Overview of the Jahob Verification System
	Implementation Language Supported by Jahob
	Specification Constructs in Jahob
	Procedure Contracts
	Specification Variables
	Class Invariants
	Encapsulating State in Jahob
	Annotations within Procedure Bodies
	Meaning of Formulas
	Receiver Parameters
	Meaning of Frame Conditions

	Generating Verification Conditions
	From Java to Guarded Command Language
	Weakest Preconditions
	Handling Specification Variables
	Avoiding Unnecessary Assumptions

	Related Work
	Jahob System Implementation

	A Higher-Order Logic and its Automation
	Higher Order Logic as a Notation for Sets and Relations
	Rationale for Using Higher-Order Logic in Jahob

	Interface to an Interactive Theorem Prover
	A Simple Interface
	A Priority Queue Example
	Formula Splitting
	Lemma Matching
	Summary of Benefits
	Discussion

	Approximation of Higher-Order Logic Formulas
	Approximation Scheme for HOL Formulas
	Preprocessing Transformations of HOL Formulas

	Summary and Discussion of the Combination Technique
	Jahob's Combination Algorithm
	Verifying Independent Invariants
	Using Annotations to Aid the Combination Algorithm
	Lemmas about Sets
	Comparison to Nelson-Oppen Combination Technique

	Related Work
	Conclusion

	First-Order Logic for Data Structure Implementation and Use
	Binary Tree Example
	Translation to First-Order Logic
	From Multisorted to Unsorted Logic
	Assumption Filtering
	Experimental Results
	First-Order Logic Syntax and Semantics
	Unsorted First-Order Logic with Equality
	Multisorted First-Order Logic with Equality
	Notion of Omitting Sorts from a Formula

	Omitting Sorts in Logic without Equality
	Multisorted and Unsorted Unification
	Multisorted and Unsorted Resolution

	Completeness of Omitting Sorts
	Soundness of Omitting Sorts in Logic with Equality
	Sort Information and Proof Length
	Related Work
	Conclusions

	Field Constraints and Monadic Second-Order Logic for Reachability
	Examples
	Doubly-Linked List with an Iterator
	Skip List
	Students and Schools

	Field Constraint Analysis
	Using Field Constraint Analysis to Approximate HOL Formulas
	Experience with Field Constraint Analysis
	Further Related Work
	Conclusion

	Boolean Algebra with Presburger Arithmetic for Data Structure Sizes
	The First-Order Theory BAPA
	Applications of BAPA
	Verifying Data Structure Consistency
	Proving Simulation Relation Conditions
	Proving Program Termination
	Quantifier Elimination

	Decision Procedure for BAPA
	Example Run of Algorithm

	Complexity of BAPA
	Lower Bound on the Complexity of Deciding BAPA
	Parameterized Upper Bound on PA
	Upper Bound on the Complexity of Deciding BAPA
	Deciding BA as a Special Case of BAPA

	Eliminating Individual Variables from a Formula
	Reducing the Number of Integer Variables

	Approximating HOL formulas by BAPA formulas
	Experience Using Our Decision Procedure for BAPA
	Further Observations
	BAPA of Countably Infinite Sets
	BAPA and MSOL over Strings

	Quantifier-Free BAPA is NP-complete
	Constructing Small Presburger Arithmetic Formulas
	Upper Bound on the Number of Non-Zero Venn Regions
	Properties of Nonredundant Integer Cone Generators
	Notes on Lower Bounds and Set Algebra with Real Measures
	A decision procedure for QFBAPA

	Related Work
	Conclusion

	Conclusions
	Future Work
	Final Remarks

